自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(73)
  • 收藏
  • 关注

原创 C语言对size_t与int区分

size_t是C标准库中用于表示对象大小的无符号整数类型,也是sizeof运算符的返回类型。它定义在多个标准头文件中,实际类型取决于平台(如64位系统可能是unsigned long)。打印时应使用%zu格式说明符。size_t适合数组索引、内存计数等场景,尤其是与标准库函数交互时;而当需要负值或小型循环时,建议使用int。选择原则是:处理对象大小时优先用size_t,需要负数或小范围计数时用int。

2025-07-16 09:20:46 166

原创 C语言中的 `extern` 作用

extern用于声明(不是定义)。用于在多个文件间共享变量/函数。防止多重定义和链接错误。

2025-07-14 17:27:09 326

原创 创建清晰图像:随机噪声的替代方案

本文演示了创建结构化图像的多种方法,包括几何形状(圆形、矩形)、渐变图像(线性和径向)、棋盘格图案、文字/字母图案、真实图像加载以及合成数据(条纹、螺旋)。通过NumPy和Matplotlib实现,这些方法可以生成清晰的测试图像,而非随机噪声,适用于计算机视觉和图像处理任务。示例代码展示了从简单几何到复杂图案的创建过程,为图像生成提供了可复用的模板。

2025-07-14 09:00:40 702

原创 Qwen模型解析

阿里云Qwen系列包含多款大型语言模型,主要分为MoE架构和密集型架构两类。Qwen3-235B-A22B是参数2350亿的顶级MoE模型,适合复杂多领域任务;Qwen3-30B-A3B是300亿参数的紧凑MoE模型,适用于资源受限场景。Qwen3-32B作为320亿参数密集型模型,提供均匀的通用能力。Qwen2.5-Max是上一代最强模型,适合通用任务。选择时需考虑任务复杂度、计算资源和性能需求,MoE模型更灵活,密集型模型更均衡。新一代Qwen3在架构和性能上较Qwen2.5有显著提升。

2025-07-12 10:47:41 1137

原创 回退N步(Go - Back - N)和选择重传(Selective Repeat)协议:综合分析

本文对比分析了两种重要的滑动窗口协议:回退N步(GBN)和选择重传(SR)。GBN采用累积确认机制,超时后重传整个窗口分组,实现简单但效率较低;SR则采用单独确认机制,仅重传丢失分组,效率更高但实现复杂。GBN适用于分组丢失率低的简单网络环境,SR更适合分组丢失频繁的广域网和无线网络。两者的选择取决于网络特性、资源限制和应用需求。随着网络技术的发展,这些协议的原理将继续影响未来可靠数据传输机制的设计,并可能通过自适应优化和混合方法实现进一步改进。

2025-07-11 18:45:13 607

原创 理解支持向量机(SVM):理论、数学和实现的综合指南

摘要: 支持向量机(SVM)是一种监督学习算法,主要用于分类任务,通过寻找最优超平面最大化类别间隔以提高泛化能力。其核心理论包括线性可分数据的硬间隔优化、引入松弛变量(软间隔)处理噪声,以及核技巧(如RBF核)解决非线性问题。数学上,SVM转化为对偶问题求解,并通过KKT条件确定支持向量。Python实现(如scikit-learn)展示了线性与非线性SVM的决策边界绘制。实际应用中需注意核选择、超参数调优(如C和γ)和特征缩放。SVM优势在于高维稳健性,但计算成本较高,适用于文本分类、图像识别等领域。文末

2025-07-09 07:55:15 1360

原创 揭开预训练Pre-Training的力量:革新机器学习

预训练是机器学习中的一个两阶段过程。在第一阶段,使用无监督或自监督学习目标在大型通用数据集上训练模型。此初始训练阶段的目标不是直接解决特定的目标任务,而是从数据中学习一组丰富的特征和表示。这些学习到的表示捕获了数据中的底层结构和模式,可用于各种下游任务。在第二阶段,将预训练模型在较小的特定任务数据集上针对目标任务进行微调。微调过程通常涉及调整预训练模型的参数,使其适应新任务的特定要求。从预训练阶段到微调阶段的知识转移,正是预训练如此强大的原因。

2025-07-07 20:55:49 386

原创 理解提示调优(Prompt Tuning)与提示工程(Prompt Engineering):概念、差异和应用场景

本文探讨了自然语言处理领域中的两种关键方法:提示工程与提示调优。提示工程是人工设计有效提示以获得理想输出的方法,依赖人类直觉和模型理解;提示调优则是通过机器学习自动优化提示嵌入参数,保持基础模型不变。文章比较了两者在情感分析等任务中的表现差异,并介绍了硬提示(可读文本)与软提示(学习向量)的概念。研究表明,提示调优能在极少参数调整下达到与完全微调相近的性能,而提示工程更适合快速部署和通用任务。最后通过T5模型在HotpotQA数据集上的示例展示了提示调优的实际应用。这两种方法各有优势,适用于不同场景,理解其

2025-07-07 09:30:00 825

原创 理解狄利克雷过程(Dirichlet Processing):理论、数学与应用

摘要: 狄利克雷过程(DP)是贝叶斯非参数统计的核心工具,通过无限成分建模未知结构数据,适用于聚类数量不确定的场景。其核心特性包括:1)基分布$H$和浓度参数$\alpha$控制生成测度的离散性与变异性;2)断棒表示和"中餐馆过程"分别从数学与生成视角阐释其聚类机制;3)在混合模型(如高斯DPMM)中自适应调整簇数量。通过Python实现验证了DP对模拟数据的聚类能力,无需预设簇数即可准确识别真实结构。DP的灵活性使其在主题建模、生物信息学等领域具有广泛适用性。

2025-07-06 09:45:00 944

原创 线性判别分析(LDA)全面指南 - 基因表达数据疾病分类

线性判别分析(LDA)是一种有监督的降维与分类方法,通过寻找最优投影方向最大化类间差异并最小化类内差异。其核心数学原理包括构建线性判别函数和计算散度矩阵(类内散度矩阵Sw和类间散度矩阵Sb),通过求解广义特征值问题获得投影向量。LDA适用于二分类(寻找最优分界超平面)和多分类问题(最多可降至c-1维),在特征服从正态分布且协方差同质的假设下表现良好。实际应用中,通过计算样本统计量(如均值向量)和矩阵求逆即可实现,是模式识别领域的重要基础工具。

2025-07-05 09:45:00 842

原创 揭开预训练Pre-Training的力量:革新机器学习

例如,在自然语言处理中,如果预训练语料库主要来自特定地区或人群,预训练模型在其学习的表示中可能存在偏差。例如,在图像预训练的上下文中,训练模型将相似图像的表示(例如,同一对象不同角度的图像)拉近,并将不相似图像的表示(例如,不同对象的图像)推开。例如,在自然语言处理中,预训练语言模型可能在较低层学习将单词表示为向量,然后随着模型在更深层的推进,构建短语、句子和段落的更复杂表示。在一种类型的数据上(例如,语言模型的互联网文本)进行预训练期间学习到的特征,可以应用于其他相关任务(例如,情感分析、机器翻译)。

2025-07-04 12:56:14 376

原创 人工智能与人类思维:大型语言模型的运作机制

摘要: 大型语言模型(LLMs)基于Transformer架构,通过注意力机制处理文本,生成连贯内容,但缺乏人类思维的具身性和深度认知。人类依赖系统1(直觉)和系统2(逻辑)的双重认知模式,结合感官经验,而LLMs仅模仿系统1,易产生语法正确但荒谬的文本。伦理风险包括数据偏见、虚假信息及隐私问题,需严格监管。尽管LLMs广泛应用于客服、医疗、创意等领域,其局限性要求人类监督。未来需平衡AI潜力与伦理框架,确保其辅助而非替代人类智能。

2025-07-04 09:00:00 595

原创 小型与大型语言模型的比较:权衡、应用场景与MMLU表现

摘要: 语言模型(LMs)分为小型(SLMs)和大型(LLMs),两者在参数规模、计算需求和应用场景上差异显著。SLMs(如Phi-3)轻量化、低功耗,适合边缘设备、实时应用(语音助手、医疗诊断)及预算有限的场景,但泛化能力较弱;LLMs(如GPT-4o、DeepSeek-V3)凭借千亿级参数和广泛训练数据,在复杂推理、跨领域任务(内容生成、代码编写)中表现优异,但计算成本高且需云端支持。MMLU基准测试显示,LLMs(如DeepSeek-R1得分90.8%)接近人类水平,而SLMs依赖微调或增强技术提升性

2025-07-03 09:00:00 1096

原创 解密机器学习中的“温度”(Temperature)参数:原理、直觉与应用

温度参数虽小,却是生成式 AI 世界中不可或缺的“魔法旋钮”。它让模型在“确定性”与“多样性”之间自由切换,既能输出严谨的答案,也能激发无限的创意。理解并善用温度,不仅能提升模型表现,更能让你的 AI 产品更智能、更有趣、更贴近人性。

2025-07-02 10:21:20 834

原创 从零到一体验 Qwen-TTS:用四川话合成语音的全流程技术实录

摘要: 阿里云Qwen-TTS是国内领先的语音合成模型,支持四川话、上海话等方言及中英双语,具备高自然度和情感表现力。本文详细介绍了从获取DashScope API Key(需以sk-开头)、环境配置到代码实现的完整流程,并提供了四川话合成示例。通过Python脚本可快速生成方言音频,支持实时播放与文件保存。常见问题包括API Key格式错误(需sk-前缀)和.env文件路径问题,文中给出了解决方案。该技术适用于多场景语音合成需求,未来将扩展更多方言支持。 (150字)

2025-07-01 09:45:57 1749

原创 掩码模型 vs. 因果模型:NLP 核心范式的全面指南

在自然语言处理(NLP)中,掩码语言模型(MLMs)和因果语言模型(CLMs)是构建基于 Transformer 模型的基础方法。它们的数学基础——MLMs 的双向注意力和 CLMs 的因果掩码——支撑了它们的优势。给定序列 $ X = [x_1, x_2, \ldots, x_n] $,标记子集 $ M $ 被掩码(例如,替换为 [MASK])。,BERT 使用特殊的 [CLS] 标记,其最终隐藏状态用作情感分析等任务的序列表示。K $ 和 $ V $ 是查询、键和值矩阵,$ d_k $ 是键维度。

2025-07-01 09:45:00 1857

原创 Python Decorator装饰器:综合指南

Python装饰器是一种在不修改原函数代码的情况下扩展其功能的技术。本文详细介绍了装饰器的基本原理和实际应用,包括: 基本语法结构 - 通过包装函数实现功能扩展,如示例中的计时装饰器 工作原理 - 解释@语法糖等价于函数替换的过程 闭包机制 - 包装器如何保留对原函数的引用 高级用法: 使用@wraps保留元数据 带参数的装饰器 多个装饰器的堆叠顺序 基于类的装饰器实现 装饰器广泛应用于日志记录、性能测试、权限控制等场景,是Python中强大的代码复用工具。文章通过多个示例代码展示了装饰器的执行流程和实际应

2025-06-30 09:45:00 277

原创 深度学习问题歧义(Ambiguity)分析

本文提出了一种基于深度学习的综合方法,用于检测自然语言处理中的问题歧义。系统核心为DeepAmbiguityAnalyzer,结合BERT模型、语言特征提取和语义分析技术,通过多维度评估问题复杂性。分析器整合了结构特征(词数、句子数)、语法特征(代词、情态动词)和语义特征(命名实体、情感分析),并开发了专门的歧义评分算法。相比传统基于规则的方法,该方案能更精准捕捉语言细微差别,有效识别由代词引用、复杂语法或语义模糊导致的歧义问题,为问答系统提供更可靠的歧义检测能力。

2025-06-29 09:45:00 1027

原创 探索如何利用 EvolveGCN 进行动态金融欺诈检测,从动态图网络理论到实际应用

金融欺诈检测面临动态变化的挑战,传统静态图分析方法难以应对。EvolveGCN通过整合图卷积网络(GCN)和循环神经网络(RNN),有效捕捉交易网络的时序演化特征。该模型包含两种变体:EvolveGCN-H演化隐藏状态,EvolveGCN-O演化权重矩阵。在金融场景中,它能处理账户特征(交易频次、金额)、商户特征(拒付率、类别)和设备特征(地理位置)等动态数据,通过自适应权重更新检测新型欺诈模式。实践表明,结合特征工程和EvolveGCN架构,可构建高效的实时欺诈检测系统,准确识别风险账户和交易。

2025-06-28 09:45:00 899

原创 从鱼类到分类器:贝叶斯决策理论和朴素贝叶斯实用指南

贝叶斯分类器是机器学习中简单但强大的算法,不依赖深度神经网络或大数据。本文通过鱼类分类示例解释了贝叶斯决策理论的核心概念:先验概率、类别条件分布和后验概率。当给定特征时,后验概率计算公式为$p(\omega_j|x)=\frac{p(x|\omega_j)p(\omega_j)}{p(x)}$,决策规则选择后验概率最高的类别。文章还介绍了高斯混合模型(GMMs)的参数估计和EM算法,并通过Python代码展示了朴素贝叶斯分类器的应用,包括经典的高尔夫预测案例。这些方法在特征向量和多类别场景中同样适用。

2025-06-27 12:24:11 1120

原创 理解机器学习中的回归:全面指南与测验(带答案)

回归分析是机器学习预测连续变量的核心技术。本文系统介绍了回归方法:从简单线性回归(单预测因子)到多元线性回归(多预测因子),再到处理高维数据的岭回归(L2正则化)和套索回归(L1正则化,具有特征选择功能)。评估指标包括MSE、RMSE、MAE和R平方等,同时强调了模型验证中线性假设、残差分析的重要性。文末通过概念题和编程实践(如Auto MPG数据集分析)巩固知识,涵盖从基础OLS估计到正则化回归的对比应用。编程示例展示了scikit-learn实现过程,包括参数提取和异方差性检测等关键步骤。

2025-06-27 09:30:00 819

原创 Unity AR构建维护系统的以AI驱动增强现实知识检索系统

开发了一套AI驱动的AR知识检索系统,整合Unity AR开发、Python后端和ChatGPT NLP功能。系统通过HoloLens 2等设备为维护工人提供上下文感知的故障排除指导,响应以全息图形式展示。 技术实现包括:Unity跨平台设置(Windows/macOS)、MRTK工具包集成、语音/文本输入模块开发(VoiceQuery.cs/TextQuery.cs)、AR显示控制(ARDisplay.cs)以及Python后端通信(BackendConnector.cs)。系统支持语音/文本查询,自动关

2025-06-26 13:03:29 865

原创 C语言问题解决技巧:一站式解决方案

有效的问题解决是C语言编程的核心。本技术博客探讨了关键策略——生成和测试、分治法、模拟、近似和进化式解决方案——这些策略用于设计健壮的算法并应对各种计算挑战。每种技术都配有实用的C代码示例,并通过附加概念来加深理解。

2025-06-26 09:30:00 1481

原创 Python高级概念:嵌套函数、装饰器和列表推导式

本文介绍了Python中的三个重要概念:1) 嵌套函数(内部函数访问外部作用域,实现闭包和工厂函数);2) 装饰器(函数修饰,保留元数据,支持参数和类装饰);3) 列表推导式(简洁创建列表,支持条件过滤和嵌套结构)。这些特性使Python代码更简洁高效。

2025-06-25 10:00:00 775

原创 Python I/O (输入/输出)操作:综合指南

Python I/O操作指南摘要:本文详细介绍了Python的输入/输出功能,涵盖文件I/O(基本读写、编码处理、二进制文件)、数据库交互(SQLite、MySQL、PostgreSQL)、网络请求(HTTP、套接字编程)以及文件系统操作。重点展示了如何使用with语句确保资源释放、参数化查询防止SQL注入、流式处理大文件等技术。通过代码示例演示了各种I/O场景的最佳实践,包括事务处理、错误处理和高效内存管理,为Python开发者提供了全面的I/O操作参考方案。

2025-06-24 10:00:00 753

转载 南洋理工对3名学生在作业中使用AI工具给予零分,学生说裁决不公平

南洋理工大学(NTU)3名学生因被指控在健康与政治课程作业中使用AI工具而遭零分处罚。其中两名承认仅将AI作为研究辅助,第三名则表示所用工具并非AI。一名学生公开抗议,称教授误将引文排序工具判定为AI使用,并提交写作过程记录等证据但未被采纳。该学生还透露同课程另有5名学生遭类似指控。事件引发舆论对NTUAI政策及调查程序的质疑。NTU官方指南虽认可AI工具的辅助作用,但强调需透明使用。目前学生已付费上诉,事件仍在发酵。

2025-06-24 08:11:32 30

原创 Python递归编程精通:优雅的问题解决方案深度探讨

本文探讨Python中的递归编程,从基础概念到高级应用。递归通过函数调用自身分解问题,适用于阶乘计算、进制转换和斐波那契数列等场景。文章解析递归三法则(基本情况、推进条件和递归调用),比较递归与迭代的优缺点,并介绍调用栈机制和内存管理。针对性能问题,提出尾递归和记忆化优化方案,同时展示递归在树遍历和分治算法中的实际应用。最后强调Python缺乏尾调用优化的限制,建议在性能关键场景考虑迭代替代。

2025-06-23 10:00:00 874

原创 C语言结构体完全指南

本文介绍了C语言中结构体的关键概念与应用。结构体允许组合不同类型变量,支持数据抽象和组织。主要内容包括:结构体声明与初始化(使用typedef)、成员赋值与比较(需自定义函数)、与函数的交互(推荐指针传递以避免复制)、指针操作(->运算符)、数组应用(作为元素或包含数组)以及动态内存管理。通过行星和汽车结构体示例演示了实际用法,并提供了比较行星质量的练习解答。还提及了嵌套结构体和内存对齐等进阶主题。结构体是C语言实现复杂数据组织和高效编程的重要工具。

2025-06-23 08:34:08 359

原创 C语言Array数组 - 完整指南与练习题

C语言数组是存储同类型数据的连续内存结构,支持初始化、排序及指针操作。本文涵盖数组基础(定义、访问边界)、初始化方式、数据读取时的边界检查、动态内存分配,以及常见操作如排序、字符串处理和二维数组。重点介绍了标准库函数qsort的使用、指针算术、命令行参数处理,并通过案例和练习演示实际应用技巧。文章强调数组边界安全、内存管理和高效算法选择,为C语言数组编程提供了全面指导。

2025-06-22 15:41:26 756

原创 掌握Python Assertion:确保代码可靠性

本文探讨了Python中Assertion的要点、应用和最佳实践。Assertion是一种验证条件是否为True的语句,用于调试和测试,能早期发现错误并提高代码质量。文章详细介绍了Assertion在验证函数输入、检查数据类型、测试条件语句和函数输出等场景的实际应用,以及如何与unittest单元测试框架配合使用。同时强调了Assertion与异常处理的区别,并提供了使用描述性消息、避免副作用、不在生产环境依赖Assertion等最佳实践。最后还介绍了自定义Assertion函数、上下文管理器测试异常等高级

2025-06-22 10:00:00 655

原创 理解Python模块:扩展代码的力量

摘要: Python模块是组织和重用代码的关键工具,通过文件封装功能实现代码模块化。模块化能降低复杂性、提高可复用性并支持团队协作。Python提供多种导入方式(如整体导入、特定函数导入或别名导入),并利用命名空间避免冲突。标准库模块(如random)提供丰富功能,用户也可创建自定义模块(.py文件)或结构化包(含__init__.py的目录)。开发时需注意模块搜索路径、双下划线属性(如__name__)及重载机制。遵循最佳实践(如集中导入、避免命名冲突)可高效利用模块化优势,充分发挥Python的可扩展性

2025-06-21 11:00:00 770

原创 使用 R 处理图像

本文介绍了使用R语言的imager包进行图像处理的关键技术。主要内容包括:数字图像的基本概念(二值、灰度和彩色图像),以及通过代码演示实现图像增强(模糊处理)、去噪(各向异性模糊)、直方图均衡化(改善对比度)和形态学处理(阈值分割)的方法。每种处理技术均配有可视化结果,直观展示效果差异。文章还提供了完整代码和输出目录设置,并列举了图像处理在汽车、医疗、安防等领域的应用场景。imager包为R用户提供了简便高效的图像分析工具,能够完成从基础处理到高级特征提取的任务。

2025-06-21 10:39:52 1086

原创 Python Class、Inheritance与Data Method

本文系统介绍了Python面向对象编程(OOP)的核心概念。主要内容包括:类与对象的创建和使用,涵盖实例属性与类属性的区别;类方法与属性的实现,包括装饰器@property的应用;继承机制,详细讲解单继承、多重继承及方法解析顺序(MRO);数据类的特性与高级用法;以及抽象基类和上下文管理器等高级概念。通过Dog、Circle、Animal等典型示例,展示了Python OOP的封装、继承和多态特性,为开发复杂程序提供了结构化解决方案。

2025-06-20 15:27:38 591

原创 Python函数/Lambda/nested function/decorator/kwargs:全面教程

本文全面介绍了Python函数编程的核心概念,分为七个部分:1)函数简介与基础语法;2)参数类型(默认参数、位置/关键字参数、可变参数);3)返回值机制;4)高级概念(嵌套函数、装饰器);5)列表推导式和Lambda表达式;6)实用范例(数据处理、错误处理、生成器)。内容涵盖从基础定义到高阶应用,通过丰富示例演示了如何利用函数实现代码复用、模块化开发和高效数据处理,是掌握Python函数式编程的完整指南。

2025-06-20 15:24:02 522

原创 保护隐私的RAG知识库

本文介绍如何构建一个本地化RAG知识库系统,通过LangChain框架和开源模型实现隐私保护与成本节约。系统采用六层架构:文档处理支持多种格式;文本分割保留元数据;使用OllamaEmbeddings生成向量;可选Chroma或FAISS存储;本地LLM(如Deepseek)生成答案;并配备实时更新机制。实现涵盖基础RAG流程和高级Agent增强功能,包括工具编排、并行处理、缓存优化等策略,最终构建出免云服务、可扩展的智能问答系统。

2025-06-20 14:31:10 1342

原创 R情感分析:解码文本中的情感

本文介绍了情感分析的概念、应用场景及实现方法。情感分析通过计算方式识别文本中的情感倾向(积极/消极/中性),广泛应用于公众意见分析和消费者洞察。虽然面临讽刺等语言复杂性的挑战,其典型流程包括文本预处理(分词、停用词过滤等)和情感分类评分。文章提供了R语言实现示例,通过tm包进行文本预处理,使用syuzhet包进行多维度情感评分(包括Syuzhet、Bing等方法),并展示了词云可视化及NRC情感分类结果。代码示例涵盖了从数据清洗到可视化分析的完整流程,帮助用户快速掌握情感分析的核心技术。

2025-06-16 11:47:18 732

原创 R文本聚类分析:基于相似性的文档分组

文本聚类分析摘要 文本聚类是一种无监督学习方法,通过内容相似性自动将文档分组。其处理流程包括文本预处理、创建词项-文档矩阵、TF-IDF标准化、距离计算与聚类算法应用(如K-means、层次聚类或HDBSCAN),最后为每个聚类生成标签。K-means假设球形簇但对噪声敏感,而HDBSCAN能识别复杂形状簇并处理噪声。与主题模型不同,聚类关注文档分组而非潜在主题识别。可视化技术(如PCA和肘部图)有助于评估聚类效果。实例分析展示了从数据预处理到评估的完整流程,证明该方法在新闻分类等场景中的实用性。

2025-06-16 10:56:49 1056

原创 循环神经网络(RNN):从理论到翻译

循环神经网络(RNN)是一种专为处理序列数据设计的神经网络,如时间序列、自然语言或语音。与传统的全连接神经网络不同,RNN具有"记忆"功能,通过循环传递信息,使其特别适合需要考虑上下文或顺序的任务。它出现在Transformer之前,广泛应用于文本生成、语音识别和时间序列预测(如股价预测)等领域。在每个时间步ttt,RNN执行以下操作:隐藏状态更新:ht=tanh(Whhht−1+Wxhxt+bh) h_t = \text{tanh}(W_{hh}h_{t-1} + W_{xh}x_t + b_h) ht

2025-06-15 14:27:53 221

原创 使用LDA进行主题建模:发现文本中的隐藏主题 - 父亲节特别版

主题建模识别代表文档集合信息的最佳词语组(主题)。它是一种用于数据探索的统计方法,揭示文本数据中的模式或类别,无需人工干预。LDA是一种流行的主题建模算法,假设文档是主题的混合,主题是词语的混合。通过使用主题建模,我们可以快速了解文本数据的结构,并识别嵌入在文本中的类别。主题1(逃亡者):词语如“仆人”、“奖励”、“逃跑”。主题2(政府):词语如“国家”、“法律”,“总统”。LDA是一种建模文本中主题的特定方法(算法)。LDA通过特定的概率过程假设文档是如何生成的来实现这一点。

2025-06-15 10:11:02 915

原创 R语言文本探索与预处理:入门指南

本文介绍了R语言中文本预处理与分析的基本流程。首先讲解正则表达式的作用及常用函数(grep、sub等),对比基础R与stringr包的操作差异。然后重点阐述tm包处理文本的步骤:创建语料库、数据清洗(转小写、去停用词等)、分词及词干提取。最后展示词频分析、关联词查找和词云可视化等方法。全文系统性地呈现了将非结构化文本转化为结构化数据并获取洞察的完整流程,为文本分析提供实用指南。

2025-06-14 18:07:09 848

支持向量机(SVM)是一种监督学习算法,主要用于分类任务,通过寻找最优超平面最大化类别间隔以提高泛化能力

支持向量机(SVM)是一种监督学习算法,主要用于分类任务,通过寻找最优超平面最大化类别间隔以提高泛化能力。其核心理论包括线性可分数据的硬间隔优化、引入松弛变量(软间隔)处理噪声,以及核技巧(如RBF核)解决非线性问题。数学上,SVM转化为对偶问题求解,并通过KKT条件确定支持向量。Python实现(如scikit-learn)展示了线性与非线性SVM的决策边界绘制。实际应用中需注意核选择、超参数调优(如C和γ)和特征缩放。SVM优势在于高维稳健性,但计算成本较高,适用于文本分类、图像识别等领域。文末附测验问题及答案,帮助巩固理解。 (字数:150)

2025-07-09

近年来,AI 语音合成(Text-to-Speech, TTS)技术飞速发展,已经从"能听懂"进化到"能听出情感、方言和个性" 阿里云 Qwen-TTS(通义千问语音合成)是国内首批支持多种中文方

近年来,AI 语音合成(Text-to-Speech, TTS)技术飞速发展,已经从"能听懂"进化到"能听出情感、方言和个性"。阿里云 Qwen-TTS(通义千问语音合成)是国内首批支持多种中文方言(包括四川话、上海话、京片子)和中英双语的高质量 TTS 模型之一。本文将以四川话为例,带你从 API Key 获取、环境配置、代码实现、到常见问题排查,完整体验 Qwen-TTS 的技术魅力。Qwen-TTS 是阿里云 DashScope 平台推出的高自然度、强表现力的语音合成模型。目前已支持四川话、上海话、京片子等,未来将扩展更多方言和语言7 种中英双语声音,适合多场景应用。自动根据文本调整语调、节奏、情感色彩,媲美真人朗读。通过 DashScope API 快速集成,支持 Python、RESTful 等多种调用方式。在 SeedTTS-Eval 等权威基准上达到人类水平的自然度和相似度。

2025-07-01

机器学习新加坡南洋理工机器学习-回归分析测验的答案解析:概念理解、代码实现及异方差性检测文档的主要内容,

内容概要:本文档是关于回归分析测验的答案解析,涵盖概念性和编程实践两部分内容。概念性问题包括简单线性回归与多元线性回归的区别、最小二乘法(OLS)失效的原因、Lasso和Ridge回归的作用机制、调整后的R²的意义以及异方差性的检测方法。编程部分基于Python和Auto MPG数据集,演示了如何进行简单的线性回归、多元线性回归、岭回归和Lasso回归,并通过散点图检查残差与预测值之间的关系以评估模型是否存在异方差性。 适合人群:对机器学习特别是回归分析有一定了解的数据科学家、统计学家或相关领域的学生和从业者。 使用场景及目标:①理解不同类型的回归模型及其应用场景;②掌握如何使用Python实现各种回归模型并解释结果;③学会通过可视化手段检查模型假设是否成立,如是否存在异方差性等问题。 阅读建议:读者应熟悉基本的统计学概念和Python编程技巧,在阅读时可以结合实际案例操作练习,同时注意理解每个模型背后的数学原理及其适用条件。

2025-06-23

机器学习新加坡南洋理工机器学习-回归分析全面指南:线性回归、岭回归与Lasso回归模型详解及应用介绍了机器学习

内容概要:本文全面介绍了机器学习中的回归分析,从简单的线性模型到高级的岭回归和套索回归,涵盖了回归的基本概念、模型拟合方法、评估指标以及验证技术。文章首先区分了回归与分类的不同之处,指出回归用于预测连续数值结果。接着详细解释了简单线性回归和多元线性回归的数学表达式及其应用场景。对于模型拟合,重点讲解了最小二乘法(OLS)的工作原理,并讨论了其在高维数据下的局限性。针对这些问题,引入了岭回归和套索回归,分别通过L2和L1正则化来提高模型稳定性和泛化能力。此外,还介绍了常用的模型评价指标如均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)以及R平方(R²),并强调调整后的R²在特征选择中的重要性。最后,探讨了非线性回归的应用场景和技术挑战,并提供了一个小测验帮助读者巩固所学知识。 适合人群:对机器学习感兴趣的学生、研究人员或从业者,特别是那些希望深入了解回归分析理论和技术细节的人士。 使用场景及目标:①理解线性回归的基础理论和公式推导;②掌握普通最小二乘法、岭回归和套索回归的区别及其适用条件;③学会使用Python库(如scikit-learn)进行实际数据分析和建模;④能够识别并解决常见的模型假设违反问题,如异方差性。 阅读建议:本文不仅提供了理论知识,还包括了具体的编码练习,因此建议读者在学习过程中动手实践,利用提供的代码示例加深理解。同时,关注每个部分后面的思考题和习题,有助于更好地掌握关键概念。

2025-06-23

【区块链技术】基于Leaderless共识的Redbelly区块链系统设计:提升交易处理性能与可扩展性

内容概要:本文探讨了区块链的可扩展性问题,并重点介绍了Redbelly区块链系统。文章首先对比了有领导者(Leader-Based)和无领导者(Leaderless)共识机制的优缺点,指出有领导者模式容易形成性能瓶颈,而无领导者模式则有更好的扩展性和容错能力。接着,阐述了区块交换时间的不同,在有领导者模式下,区块传播受限于领导者上传速度和最慢跟随者的下载速度,而在无领导者模式下,每个节点只需上传部分数据,从而提高了效率。随后,介绍了Redbelly区块链如何通过确定性共识协议(DBFT)避免分叉,并确保交易的安全性和最终一致性。此外,还提到了超级块协议和分片验证技术的应用,使得Redbelly能够在多节点环境下实现高效并行处理,大幅提升吞吐量。最后,文章通过实验数据展示了Redbelly相比比特币和以太坊具有更高的性能优势; 适合人群:对区块链技术有一定了解的研究人员、开发者以及关注区块链可扩展性的专业人士; 使用场景及目标:①理解不同共识机制的工作原理及其对系统性能的影响;②学习Redbelly区块链如何解决传统区块链存在的分叉、低效等问题; 其他说明:文中附带了一些简单的问答题,帮助读者加深对关键概念的理解。

2025-06-06

分布式系统,distributed sytesm

分布式系统,distributed sytesm

2025-06-06

VIP资源MySQL安装与配置全流程指南:从环境搭建到基础操作

简介:本VIP教程将为您详细讲解MySQL数据库的下载安装、环境配置、初始安全设置、图形化管理工具使用、以及基础SQL语句操作。内容涵盖Windows、macOS、Linux等主流操作系统,适合数据库零基础新手和希望提升数据管理能力的开发者。通过本教程,您将掌握MySQL数据库的核心安装与使用技能,为后续数据开发与项目实战打下坚实基础。

2025-06-05

Python安装与使用全攻略:从零基础到算法实战

本VIP教程将为您系统讲解Python的下载安装、环境配置、入门语法、常用开发工具、以及基础算法(如排序、查找、递归等)的实现与应用。内容涵盖Windows、macOS、Linux等主流操作系统,适合零基础新手和有志于提升编程能力的开发者。通过本教程,您将掌握Python开发的核心技能,为后续深入学习和项目实战打下坚实基础。

2025-06-05

本VIP资源将手把手教你如何下载安装Anaconda、创建和管理虚拟环境、常用包管理命令,以及Anaconda的入门使用方法,适合Python初学者和数据科学爱好者

1. Anaconda简介与优势 2. Anaconda下载与安装(Windows/Mac/Linux) 3. 配置国内镜像源(加速下载) 4. 创建与管理虚拟环境 5. 安装/卸载常用Python包 6. 启动Jupyter Notebook与Spyder 7. 常见问题与解决方法

2025-06-05

DeepSeek本地部署及WebUI可视化教程

DeepSeek是近年来备受关注的大模型之一,支持多种推理和微调场景。很多开发者希望在本地部署DeepSeek模型,并通过WebUI进行可视化交互。本文将详细介绍如何在本地环境下部署DeepSeek,并实现WebUI可视化,包括Ollama和CherryStudio的使用方法。

2025-06-04

【B区块链系统】共识机l制与 robuostness 分析:PoW、PoA、PoS、DBFT 的安全性和扩展性探讨

内容概要:本文档主要介绍了区块链系统的鲁棒性,包括工作量证明(PoW)、权益证明(PoS)、权威证明(PoA)以及拜占庭容错(DBFT)四种共识机制的特点及其潜在漏洞。文中强调了鲁棒性对于维护区块链系统完整性、一致性和可用性的重要性,并指出共识机制是维持信任的关键。文档还探讨了分叉、能源消耗和恶意行为对区块链系统的挑战,举例说明了比特币和以太坊的相关情况。此外,文档分析了不同共识机制的优缺点,如PoW的安全性和高能耗、PoA的速度与脆弱性、PoS的高效性和高成本、DBFT在部分同步环境下的最佳鲁棒性等。最后,文档简述了几种网络攻击形式以及扩展性问题,并通过问答环节和小测验巩固所学知识。 适合人群:计算机科学专业学生、区块链开发者、安全研究人员以及对区块链技术感兴趣的人员。 使用场景及目标:①理解区块链系统中鲁棒性的概念及其重要性;②掌握不同共识机制的工作原理、应用场景和局限性;③了解常见的网络攻击方式及应对措施;④探讨区块链系统的扩展性问题。 其他说明:建议读者结合实际案例进行学习,以便更好地理解各种共识机制的实际应用效果。同时,可以通过提供的额外资源深入研究相关主题。

2025-05-30

python入门-1-scalar types

Environment setup Scalar types Control loops Typecasting File I/O

2025-05-30

python入门-datastructure-deep-dive

Deep Dive on Python Data Structures

2025-05-30

Python入门-2-datastructure

tuple list dictionary

2025-05-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除