本学习笔记源自于B站up主【我是土堆】的视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】
本博客是该视频教程中第1-11个视频的详细学习笔记,第12-22个视频、第23-33个视频的详细学习笔记链接如下:
PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第12-22个视频笔记)
PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第23-33个视频笔记)
目录
2、Python编辑器的选择、安装及配置(Pycharm、Jupyter的安装)
3、【FAQ】为什么torch.cuda.is_available返回False
1、PyTorch环境的配置及安装
无
2、Python编辑器的选择、安装及配置(Pycharm、Jupyter的安装)
Jupyter的安装,讲解的比较详细
1)安装anaconda后无需再次安装。
2)jupyter默认安装在base环境中,所以在新环境中使用jupyter时需要再次安装jupyter。
3)在命令提示符中进入新环境,输入conda install nb_conda安装juypter。
4)安装完成后输入juypter notebook即可在新环境中打开juypter notebook。
3、【FAQ】为什么torch.cuda.is_available返回False
无
4、Python学习中的两大法宝函数(help、dir)
(1)dir()函数
dir()函数返回一个包含对象的所有属性和方法名称的字符串列表。
使用案例1:
import torch
print(dir(torch))
输出torch里面各种各样的分隔区:
使用案例2:
import torch
# print(dir(torch))
# print(dir(torch.cuda))
print(dir(torch.cuda.is_available()))
输出torch.cuda.is_available里面各种各样的变量: