GEE/PIE遥感大数据处理与应用

本文介绍了遥感技术的发展,特别是GEE和PIEEngine等云平台在处理高分辨率、大数据量的遥感数据中的重要角色,涵盖了影像处理、数据分析、可视化、机器学习等方面的应用和案例。

随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。

为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台如谷歌Earth Engine(GEE)和航天宏图的PIE Engine等。其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。目前,Earth Engine上包含超过900个公共数据集,每月新增约2 PB数据,总容量超过80PB。作为国内最先进的遥感云平台,PIE Engine近年来发展发非常迅速,拥有丰富的国产卫星数据,以及中国区域的其它重要开源数据,在数据安全性和访问便利性方面具有独到的优势。与传统的处理影像工具(例如ENVI)相比,遥感云平台一方面提供了丰富的计算资源;另一方面,其巨大的云存储能力节省了科研人员大量的数据下载和预处理时间。

一、初识GEE和PIE遥感云平台

1. GEE和PIE平台及典型应用案例介绍

2. JavaScript基础,包括变量,运算符,数组,判断及循环语句等

3. 遥感云重要概念与典型数据分析流程

4. 遥感云基本对象及平台上手

· 影像与影像集

· 几何体、要素与要素集

· 日期、字符、数字

· 数组、列表、字典

· 影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等

主要对象最常用API介绍

二、GEE和PIE影像大数据处理基础

1. . 关键知识点

· 影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等

· 影像掩码,裁剪和镶嵌

· 集合对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值