YOLOv8改进 更换轻量级网络结构

本文介绍了如何将GhostNet结构应用于YOLOv8以改进目标检测性能。GhostNet是一种轻量级网络,基于MobileNetV3,通过Ghost模块减少参数,提高效率。在代码实现部分,详细说明了在YOLOv8框架中添加和使用GhostNet的步骤,包括在ultralyticsultralytics n目录下创建新模块,修改tasks.py文件,以及创建新的yaml配置文件。经过验证,GhostHG模块成功集成到模型中,提升了模型的实时性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、GhostNet论文

论文地址:1911.11907.pdf (arxiv.org)

二、 GhostNet结构

GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。

GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型的效率。此外,GhostNet还引入了难样本挖掘和标签平滑等技术,进一步提升了检测的准确性和鲁棒性。

Gh

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值