YOLOv9改进 添加可变形注意力机制DAttention

本文介绍了将Deformable Attention Transformer(DAttention)应用于YOLOv9的改进过程,通过学习调整注意力权重以提升目标检测性能。文章详细阐述了DAttention的工作原理,并提供了代码实现步骤,包括在yolo.py和attention.py文件中的修改,以及配置yolov9+ DAttention.yaml文件进行训练验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Deformable Attention Transformer论文

论文地址:arxiv.org/pdf/2201.00520.pdf

二、Deformable Attention Transformer注意力结构

Deformable Attention Transformer包含可变形注意力机制,允许模型根据输入的内容动态调整注意力权重。在传统的Transformer中,注意力是通过对查询和键向量之间的点积来确定的,然后将输入嵌入的加权和进行计算。然而,这种方法假设了一个刚性的注意力模式,其中每个查询都会参与固定的一组键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值