GPT和GPT2结构的区别

本文探讨了GPT2的结构特点,特别是其在transformers之后加入的LayerNorm层,并对比了不同设置下残差单元的计算公式及反向传播过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT1结构图如下所示:
GPT1示意图片GPT2结构图如下:
GPT2结构示意图注意,GPT2的最后一个LayerNorm在24个transformers或是12个transformers结构之后添加的,
这里layernormalization放在前面类似于预激活函数的设定,在另外一篇文章Identity mappings in deep
residual networks.
这里在Idenity mapping in deep residual networks之中有推导过程,这里简单的写一下
原始残差单元计算公式如下:
yl=h(xl)+F(xl,Wl)(1)y_{l} = h(x_{l})+F(x_{l},W_{l})(1)yl=h(xl)+F(xl,Wl)(1)
xl+1=f(yl)(2)x_{l+1} = f(y_{l}) (2)xl+1=f(yl)(2)
l为第l个单元输入的特征
其中F代表残差函数,我们假设函数h为恒等变换,则将(2)代入(1)中可以获得
xl+1=xl+∑i=1L−1F(xl,Wl)(3)x_{l+1} = x_{l}+ \sum\limits_{i=1}^{L-1}F(x_{l},W_{l}) (3)xl+1=xl+i=1L1F(xl,Wl)(3)
通过反向传播的链式法则进行求导,可以得到结果
∂E∂xL=∂E∂xL∗∂xL∂xl=∂E∂xL(1+∂∂xl∑i=1L−1F(xi,Wi))\frac{\partial E}{\partial x_{L}} = \frac{\partial E}{\partial x_{L}} * \frac{\partial x_{L}}{\partial x_{l}} = \frac{\partial E}{\partial x_{L}}(1+\frac{\partial }{\partial x_{l}}\sum \limits_{i=1}^{L-1}F(x_{i},W_{i}))xLE=xLExlxL=xLE(1+xli=1L1F(xi,Wi))
如果说这里的h(xl)h(x_{l})h(xl)不为恒等函数的情况下
∂E∂xL=∂E∂xL∗∂xL∂xl=∂E∂xL(∑i=1L−1xi+∂∂xl∑i=1L−1F(xi,Wi))\frac{\partial E}{\partial x_{L}} = \frac{\partial E}{\partial x_{L}} * \frac{\partial x_{L}}{\partial x_{l}} = \frac{\partial E}{\partial x_{L}}( \sum\limits_{i=1}^{L-1}x_{i}+\frac{\partial}{\partial x_{l}}\sum \limits_{i=1}^{L-1}F(x_{i},W_{i}))xLE=xLExlxL=xLE(i=1L1xi+xli=1L1F(xi,Wi))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值