Pandas数据分析之数据读写和存储

Pandas数据分析之数据读写和存储



一、文本格式读写

1.Pandas解析函数

函数 描述
read_csv 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为逗号
read_table 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为制表符(‘\t’)
read_fwf 读取特定宽列格式数据(没有分隔符)
read_clipboard read_table的剪贴板版,读取剪贴板中的数据,将网页转换为表格时很有用
read_excel 从 Excel的XLS 或XLSX文件中读取表格数据
read_hdf 读取 pandas存储的 HDF5 文件
read_html 读取 HTML 文档中的所有表格
read_json 读取 JSON(JavaScript Object Notation)字符串中的数据
read_msgpack MessagePack二进制格式编码的 pandas 数据
read_pickle 读取 Python pickle格式中存储的任意对象
read_sas 读取存储于 SAS 系统自定义存储格式的 SAS 数据集
read_sql 将SQL查询结果(使用 SQL Alchemy)读取为pandas的 DataFrame
read_stata 读取 Stata 文件格式的数据集
read_feather 读取 Feather 二进制文件格式

2.Pandas解析函数参数

解析函数的参数主要有5种类型:

  • 索引:将⼀个或多个列当做返回的DataFrame处理,以及是否从⽂件、⽤户获取列名。
  • 类型推断和数据转换:包括⽤户定义值转换和⾃定义的缺失值符号列表等。
  • ⽇期时间解析:包括组合功能,包括分散在多个列中的⽇期时间信息组合成结果中的单个列。
  • 迭代:⽀持对⼤型⽂件分块迭代。
  • 不规整数据问题:跳过⾏、⻚脚、注释或其他次要数据(⽐如由成千上万个逗号隔开的数值数据)。
参数 描述
path 表示文件系统位置、URL、文件型对象的字符串
sep或delimiter 用于分隔每行字段的字符序列或正则表达式
header 用作列名的行号。默认为0(第一行),如果没有header行则设置为None
index_col 用作行索引的列编号或列名。可以是单个名称/数字或由多个名称/数字组成的列表(分层索引)
names 用于结果的列名列表,结合header=None使用
skiprows 需要忽略的行数或行号列表,从文件开始处算起(从0开始)
na_values 一组用于替换NA的值
comment 在行结尾处分隔注释的字符
parse dates 尝试将数据解析为datetime,默认为False。如果为True,则尝试解析所有列。可以指定一组列号或列名进行解析。如果列表的元素为列表或元组,就会将多个列组合到一起再进行日期解析工作(例如,日期/时间分别位于两个列中)
keep _date_col 如果连接多列解析日期,则保持参与连接的列。默认为False。
converters 由列号/列名跟函数之间的映射关系组成的字典。例如{‘foo’: f)会对foo列的所有值应用函数f
dayfirst 当解析有歧义的日期时,将其看做国际格式(例如,7/6/2012->June7,2012),默认为False
date_parser 用于解析日期的函数
nrows 需要读取的行数(从文件开始处算起)
iterator 返回一个TextParser以便逐块读取文件
chunksize 用于选代的文件块的大小
skip_footer 需要忽略的行数(从文件末尾处算起)
verbose 打印各种解析器输出信息,比如位于非数值列中缺失值的数量
encoding 用于unicode的文本编码格式。例如,"utf-8"表示用UTF-8编码的文本
squeeze 如果数据经解析后仅含一列,则返回Series
thousands 千分位分隔符,如",“或”."

3.文件读入

(1)HDF5

  • HDF5中的HDF指的是分层数据格式(hierarchical data format)。每个HDF5文件都含有一个文件系统式的节点结构,能够存储多个数据集并支持元数据;支持多种压缩模式的即时压缩,更高效的存储重复模式的数据;适用于处理不合适在内存中存储的超大型数据
  • HDFStore支持两种存储模式,‘fixed’和’table’。后者通常会更慢,但是支持使用特殊语法进行查询操作
frame = pd.DataFrame({
   
   'a': np.random.randn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值