说明:
高精度乘法比高精度加法难上一点,但是来看高精度乘法和除法了,那么想必高精度加法和减法都有了解过,所以开始的数组逆序存入什么的不说了(
来回顾一下高精度:
由于计算机的存储字节有限,所以不能完整表示一个很大整数的精确值,这时候就得用到其他的方法,称之为高精度算法。这里的高精度乘法主要指按位模拟乘法,实际上就是模拟乘法的过程,也就是笔算的过程。高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个20000位的数的和。这时,就要用到高精度算法了。
高精度乘法流程:
- 读取两个大数A和B,并计算它们的长度la和lb。
- 初始化三个数组a、b和c,分别用于存储大数A、B和它们的乘积。
- 将大数A和B逆序存储在数组a和b中,方便计算乘积。
- 调用mul函数计算乘积,将结果存储在数组c中。
- 输出数组c中的结果。
(借用董晓老师的示意图)
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N=4001;
int a[N],b[N],c[N];
int la,lb,lc;
void mul(int a[],int b[],int c[]){ //a*b=c
for(int i=1;i<=la;i++)
for(int j=1;j<=lb;j++)
c[i+j-1]+=a[i]*b[j]; //存乘积
for(int i=1;i<lc;i++){
c[i+1]