C:曼哈顿距离(manhattan distance)问题

本文介绍了一种高效计算平面内多个点间曼哈顿距离最大值的方法,通过选取基准点并计算各点到基准点的距离来简化问题,最终实现O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两点(x1,y2)与(x2,y2)之间的曼哈顿距离为|x1-x2|+|y1-y2|,在上图中,红蓝黄三色线都表示两黑点间的曼哈顿距离。

现在Uncle Bird有n个点(xi,yi),显然,你可以算出任意两个点之间的曼哈顿距离。

那么问题来了:请你帮Uncle Bird算出任意两点之间曼哈顿距离的最大值。

小提示:因为点的数量很多(10^5),不能直接枚举两点计算距离,需要一个小小的trick。

Input

第一行输入一个正整数t(t<=10),表示测试数据组数。

每组测试数据的第一行输入一个正整数n(2<=n<=100000),表示点的个数。

接下来n行,每行输入两个用空格分开的整数xi和yi(-10000<=xi<=10000,-10000<=yi<=10000),表示第i个点的坐标。

Output

对每组输入数据,输出一行,

为任意两点间曼哈顿距离的最大值。

Sample Input

3
2
1 1
2 2
3
1 1
2 2
3 3
3
0 0
4 0
2 1

Sample Output

2
4
4


-------------------------------------------------------------------------------------------------------------------我是分界线-----------------------------------------------------------------------------------------------------

这题是关于manhattan distance的一个性质。考虑取一个在所有点左下角的点为基准A(x0,y0),那么对于满足x1<=x2和y1<=y2的点对B(x1,y1)和C(x2,y2),BC(曼哈顿距离,下同)=AC-AB。同理取右下角基准点,可以处理x1<=x2和y1>=y2的的点对的距离。这样,将两两点之间曼哈顿距离转换为到基准点的距离之差。那我们只需要用到基准点距离最大值减去最小值,就得到了两点之间距离最大值。对两个基准分别做这个操作然后取较大的就可以了。复杂度o(n)。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int xl=-10000;
const int yl=-10000;
const int xr=10000;
const int yr=-10000;

int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        int Max1=-40000, Max2=-40000;
        int Min1=40000, Min2=40000;
        int n;
        scanf("%d", &n);
        int x, y;
        for(int i=1;i<=n;i++){
            scanf("%d%d", &x, &y);
            Max1=max(abs(x-xl)+abs(y-yl), Max1);
            Min1=min(abs(x-xl)+abs(y-yl), Min1);
            Max2=max(abs(x-xr)+abs(y-yr), Max2);
            Min2=min(abs(x-xr)+abs(y-yr), Min2);
        }
        int ans=max(Max1-Min1, Max2-Min2);
        printf("%d\n", ans);
    }
}

曼哈顿距离Manhattan Distance)是一种常用的距离度量方法,特别适用于网格状路径。它计算的是两个点在标准坐标系下各维度差的绝对值之和。曼哈顿距离在路径规划、游戏开发和机器学习等领域有广泛应用。 在C#中,可以通过以下方式实现曼哈顿距离: ```csharp using System; public class ManhattanDistanceCalculator { /// <summary> /// 计算两个点的曼哈顿距离 /// </summary> /// <param name="point1">第一个点的坐标</param> /// <param name="point2">第二个点的坐标</param> /// <returns>曼哈顿距离</returns> public static double Calculate(double[] point1, double[] point2) { if (point1.Length != point2.Length) throw new ArgumentException("两个点的维度必须相同"); double distance = 0; for (int i = 0; i < point1.Length; i++) { distance += Math.Abs(point1[i] - point2[i]); } return distance; } } class Program { static void Main(string[] args) { double[] pointA = { 3, 4, 5 }; double[] pointB = { 1, 2, 3 }; double distance = ManhattanDistanceCalculator.Calculate(pointA, pointB); Console.WriteLine($"曼哈顿距离: {distance}"); } } ``` 这段代码定义了一个`ManhattanDistanceCalculator`类,其中包含一个静态方法`Calculate`用于计算曼哈顿距离。`Main`方法中创建了两个点,并计算它们之间的曼哈顿距离曼哈顿距离的特点是它只计算直角距离,不考虑对角线距离。这使得它在某些特定场景下比欧几里得距离更适用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值