A Survey on Lightweight CNN-Based Object Detection Algorithms for Platforms with Limited Computational Resources 面向计算资源有限平台的轻量级有线电视网络目标检测算法综述
**Abstract:**几个轻量级CNN架构的综述,可用于嵌入式目标。前文主要讲了几个基于深度CNN架构,如AlexNet [14]、VGGnet [15]、GoogLeNet [16]和ResNet [17]。所有这些体系结构在计算上都很耗力,这使得它们不适合嵌入式系统的实现。重点在后面这几个轻量级的CNN架构。
MobileNet:就是上一篇讲的深度卷积可分离网络。它将卷积分解为深度方向的可分离卷积,然后是点方向的卷积,以构建轻量级深度神经网络(图9)。此外,它引入了两个简单的超参数,其中一个超参数是宽度乘数,它允许我们减少通道的数量,而第二个超参数是分辨率乘数,它减少了要素地图的空间维度。 MobileNet-SSD在COCO数据集上准确率很高,比YOLOv2好。
SqueezeNet:SqueezeNet [27]是一个小型CNN架构,在ImageNet数据集上以少50倍的参数实现AlexNet CNN的准确性.使用深度压缩技术,挤压网可以比AlexNet小500倍[28]。SqueezeNet架构基于三种策略:-使用(11)过滤器而不是(33)过滤器,因为(11)过滤器比(33)过滤器少9x个参数;-使用挤压层将输入通道数量减少到3×3过滤器;和-后期下采样以保持大的特征图。Fire模块是SqueezeNet架构的积木,由两层组成:一个压缩卷积层,只有(