PCA原理
主成分分析,又名PCA(Principal Component Analysis),主要用于降维。主成分分析主要依靠方差进行最有价值的提取。将数据投影到低维子空间实现降维。
PCA做了什么?
1.求特征之间的协方差。
cov(x,y)=1n−1∑i=1n(xij−xˉj)(xik−xˉk)
cov\left( x,y \right) =\frac{1}{n-1}\sum_{i=1}^n{\left( x_{ij}-\bar{x}_j \right)}\left( x_{ik}-\bar{x}_k \right)
cov(x,y)=n−11i=1∑n(xij−xˉj)(xik−xˉk)
2.求特征之间的协方差矩阵
Σ=1n−1((X−xˉ)T(X−xˉ)) \varSigma =\frac{1}{n-1}\left( \left( X-\bar{x} \right) ^T\left( X-\bar{x} \right) \right) Σ=n−11((X−xˉ)T(X−xˉ))
3.求协方差矩阵的特征向量和特征值。
为什么要这么做?
- 协方差可以描述两个特征之间的变动的同步程度,就是相关性,如果两个变量的协方差为0,在统计学上认为二者线性无关。但是不代表两个变量完全独立,只是代表着没有线性相关性而已。
- 在标准化的情况下,协方差越接近1,则正相关性更强,协方差越接近-1,则负相关性更强。
- 那么我们得到的协方差矩阵就是两个特征之间的线性关系。
特征向量和特征值
- 特征向量是经过以下变换得到的,其意义就是等比例放缩。
Av⃗=λv⃗A\vec{v}=\lambda \vec{v}Av=λv - 最大的特征值就是第一主成分,第二大的特征值就是第二主成分,以此类推。