前面给大家讲过MapReduce的数据倾斜解决方案以及优化,今天就给大家说下Spark的数据倾斜解决方案。
简单来说数据倾斜就是数据的 key 的分化严重不均,造成一部分数据很多,一部分数据很少的局面,即数据分布不均。如下图所示:
以 WordCount 为例,它的 map 阶段形成 (“xxxx”,1)的形式,然后在 reduce 阶段进行 value 相加,得出 “xxxx” 出现的次数。若进行 WordCount 的文本有100G,其中 80G 全部是 “xxxx”, 剩下 20G 是其余单词,那就会形成 80G 的数据量交给一个 reduce 进行相加,其余 20G 根据 key 不同分散到不同reduce 进行相加的情况。如此就造成了数据倾斜,临床反应就是 reduce 跑到99%然后一直在原地等着 那 80G 的 reduce 跑完。
为什么会出现数据倾斜
在执行shuffle操作的时候,是按照key,来进行values的数据的输出、拉取和聚合的。同一个key的values,一定是分配到一个reduce task进行处理的。多个key对应的values,比如一共是90万。可能某个key对应了88万数据,被分配到一个task上去面去执行。另外两个task,可能各分配到了1万数据,可能是数百个key,对应的1万条数据。这样就会出现数据倾斜问题。
想象一下,出现数据倾斜以后的运行的情况。
其中两个task,各分配到了1万数据,可能同时在10分钟内都运行完了。另外一个task有88万条,88 * 10 = 880分钟 = 14.5个小时。
大家看,本来另外两个task很快就运行完毕了(10分钟),但是由于一个拖后腿的家伙,第三个task,要14.5个小时才能运行完,就导致整个spark作业,也得14.5个小时才能运行完。这样就拖累了整个spark作业运行的时间,这样就很不划算了。
出现数据倾斜的现象
Spark数据倾斜,有两种表现:
-
你的大部分的task,都执行的特别特别快,(你要用client模式,standalone client,yarn client,本地机器一执行spark-submit脚本,就会开始打印log),task175 finished,剩下几个task,执行的特别特别慢,前面的task,一般1s可以执行完5个,最后发现1000个task,998,999 task,要执行1个小时,2个小时才能执行完一个task。出现以上现象,就表明出现数据倾斜了。
这样还算好的,因为虽然运行非常慢,但是至少还能跑完。 -
另一种情况是,运行的时候,其他task都执行完了,也没什么特别的问题,但是有的task,就是会突然间报了一个OOM,JVM Out Of Memory,内存溢出了,task failed,task lost,resubmitting task。反复执行几次都到了某个task就是跑不通,最后就挂掉。
某个task就直接OOM,那么基本上也是因为数据倾斜了,task分配的数量实在是太大了!所以内存放不下,然后你的task每处理一条数据,还要创建大量的对象,内存爆掉了。
这样也表明出现数据倾斜了。
这种就不太好了,因为你的程序如果不去解决数据倾斜的问题,压根儿就跑不出来。
作业都跑不完,还谈什么性能调优这些东西?
定位导致数据倾斜的代码
根据log去定位
出现数据倾斜的原因,基本只可能是因为发生了shuffle操作,在shuffle的过程中,出现了数据倾斜的问题。因为某个或者某些key对应的数据,远远的高于其他的key。
这里给大家罗列一些常用的并且可能会触发 shuffle 操作的算子:
distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartitio