15-YOLOV8OBB损失函数详解

一、YOLO OBB支持的OBB

在Ultralytics YOLO 模型中,OBB 由YOLO OBB 格式中的四个角点表示。这样可以更准确地检测到物体,因为边界框可以旋转以更好地适应物体。其坐标在 0 和 1 之间归一化:
class_index x1 y1 x2 y2 x3 y3 x4 y4
YOLO 在内部处理损失和输出是xywhr 格式,xy表示边界框的中心点、whr表示宽度、高度和旋转角度。
OBB 格式示例
在这里插入图片描述
例如:
0 0.780811 0.743961 0.782371 0.74686 0.777691 0.752174 0.776131 0.749758

二、datasets(标签转换)

在YOLOV8中经过datasets加载图片和标签后,再经过图像增强(包括mosaic、旋转、平移、仿射等变化)后将标签处理成如下格式:
在这里插入图片描述
其中,经过旋转后(原来标签是由4个角点表示),使用(x, y), (w, h), angle = cv2.minAreaRect(pts)获取转换后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值