RBF神经网络和BP神经网络有什么区别?

本文对比了RBF和BP神经网络的区别,主要在于激活函数的选择,RBF使用径向基函数,而BP通常使用Sigmoid或ReLU。RBF网络具有局部映射特性,适用于模式识别和分类任务,而BP神经网络则是全局逼近,适合于复杂函数的逼近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要最简单的说法就是,激活函数不同。RBF是径向基函数;而BP一般是sigmoid函数 (或者Relu)。

局部逼近与全局逼近BP神经网络的隐节点采用输入模式与权向量的内积作为激活函数的自变量,而激活函数采用Sigmoid函数。各隐节点对BP网络的输出具有同等地位的影响,因此BP神经网络是对非线性映射的全局逼近。RBF神经网络的隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并使用径向基函数(如Gaussian函数)作为激活函数。神经元的输入离径向基函数中心越远,神经元的激活程度就越低。RBF网络的输出与数据中心离输入模式较劲的“局部”隐节点关系较大,RBF神经网络因此具有“局部映射”特性。

1,从模型结构上来看RBF神经网络从图形结构上来说,就是一种单隐层的神经网络. 这个隐层的每个神经元输出的是一个RBF函数的值,这些RBF函数的核宽都是一样的,它们中心要么是每个训练样本点,要么是训练样本点的聚类中心,当然还可以有其他。核化的支持向量机就可以看成是一种RBF网络. 事实上1995年Vapnik发表在Machine Learning 期刊上的支持向量机的文章, 名字就叫做“支持向量网络”,因为隐层放置的就是支持向量. 而普通的BP神经网络可以有很多隐层,每个隐层的神经元都放置相同的激活函数.
2,从训练算法上来看不同的网络结构定义了不同的假设(函数)空间. 在指定了损失函数的情况下, 我们的目标就是在这个函数空间中寻找一个函数使得平均损失最小,或者说寻找一组函数的参数使得平均损失最小,这无疑就是一个无约束最优化问题. 用梯度下降(在神经网络领域又叫BP)或其他优化算法都可以求解.
3, RBF神经网络与RKHS(高斯核生成)中表示定理的关联一个full RBF network 在形式上与使用表示定理对高斯核函数诱导出的RKHS函数空间的函数进行展开后的形式是一样的. 这一点非常有趣. 前者产生时间在前, 后者有优美的泛函理论支持.

知乎链接:https://www.zhihu.com/question/44328472
我看的,觉得写的挺好的,总结的也很好!保存方便自己回看!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值