在 Coze 平台工作流开发中,使用图生视频大模型需要时间比较长比如5分钟,如何解决工作流运行超时的问题以及等在视频生成以后再向下走

在 Coze 平台处理长时间(5分钟)图生视频任务并确保后续流程正确执行,

需要采用 同步 或者异步工作流架构。以下是具体解决方案:

一:同步工作流解决方案:简单高效的图生视频超时处理

核心方案:分阶段轮询 + 状态保持

未完成
已完成
开始
启动视频生成任务
获取任务ID
存储任务状态
轮询状态
等待10秒
获取视频结果
执行后续步骤

具体实现步骤

1. 创建视频生成服务(需要独立部署)

# 简单Flask示例 (部署在单独服务器)
from flask import Flask, request, jsonify
import threading
import time
import uuid

app = Flask(__name__)
tasks = {}

def video_generation_task(task_id, image_data):
    """模拟5分钟的视频生成任务"""
    # 实际项目中调用图生视频模型
    print(f"开始生成视频任务: {task_id}")
    time.sleep(300)  # 模拟5分钟处理时间
    tasks[task_id] = {
        'status': 'completed',
        'video_url': f'https://storage.example.com/videos/{task_id}.mp4'
    }
    print(f"视频生成完成: {task_id}")

@app.route('/generate', methods=['POST'])
def generate_video():
    """启动视频生成任务"""
    task_id = str(uuid.uuid4())
    image_data = request.json['image']
    
    # 存储初始状态
    tasks[task_id] = {'status': 'processing'}
    
    # 在新线程中启动任务
    thread = threading.Thread(target=video_generation_task, args=(task_id, image_data))
    thread.start()
    
    return jsonify({'task_id': task_id})

@app.route('/status/<task_id>', methods=['GET'])
def check_status(task_id):
    """检查任务状态"""
    task = tasks.get(task_id, {})
    return jsonify(task)

2. Coze 工作流配置

节点1: 启动视频生成
  • 节点类型: HTTP 请求
  • 方法: POST
  • URL: https://your-video-service/generate
  • 请求体:
    {
      "image": "{{input.image}}"
    }
    
  • 保存响应: task_response
节点2: 提取任务ID
  • 节点类型: JavaScript 代码
  • 代码:
    return {
      task_id: task_response.task_id
    };
    
节点3: 状态轮询循环
  • 节点类型: 循环
  • 循环条件:
    // 最多尝试30次(5分钟)
    attempt < 30 && status !== "completed"
    
  • 循环内容:
    1. HTTP 请求 (GET):
      • URL: https://your-video-service/status/{{task_id}}
      • 保存为: status_response
    2. 条件分支:
      • 如果 status_response.status === "completed": 跳出循环
      • 否则: 继续
    3. 等待节点: 10秒
节点4: 获取视频结果
  • 节点类型: JavaScript 代码
  • 代码:
    return {
      video_url: status_response.video_url
    };
    

在这里插入图片描述
在这里插入图片描述

节点5: 后续处理
  • 使用视频URL执行后续步骤

关键技术点说明

  1. 状态轮询机制:

    • 每60秒检查一次任务状态
    • 最大轮询5次(5分钟)
    • 避免单次请求超时
  2. 轻量级HTTP检查:

    • 状态检查接口设计为轻量级操作
    • 只返回简单状态信息,不返回大文件
  3. 异步任务处理:

    • 视频生成在服务器后台线程运行
    • 主工作流通过轮询获取状态
  4. 超时保护:

    // 在循环条件中添加超时保护
    const maxAttempts = 30; // 5分钟(30*10秒)
    let attempt = 0;
    
    while (attempt < maxAttempts) {
      attempt++;
      const status = await checkStatus(task_id);
      
      if (status === 'completed') break;
      await sleep(10000); // 等待10秒
    }
    
    if (attempt >= maxAttempts) {
      throw new Error('视频生成超时');
    }
    

此方案通过简单的轮询机制解决了长时任务在同步工作流中的超时问题,保持了工作流的线性执行流程,同时确保在视频生成完成后继续后续步骤。

二:异步工作流架构(核心方案)

在这里插入图片描述

具体实施步骤:

1. 创建异步视频生成服务
# 伪代码:视频生成服务API
@app.post("/generate-video")
async def generate_video(image: UploadFile):
    task_id = str(uuid4())
    # 存储任务到队列
    redis.set(f"task:{task_id}", "processing")
    # 异步执行任务
    asyncio.create_task(process_video(task_id, image))
    return {"task_id": task_id, "status_url": f"/status/{task_id}"}

async def process_video(task_id, image):
    # 实际调用视频模型(耗时5分钟)
    video_url = video_model.generate(image)
    # 存储结果
    redis.set(f"task:{task_id}", json.dumps({"status": "completed", "video_url": video_url}))
2. Coze 主工作流配置
步骤操作关键配置
1调用视频服务使用 HTTP 请求节点
Method: POST, URL: https://your-service/generate-video
2获取任务ID解析响应中的 task_id
3存储任务状态使用 Coze 内置数据库 存储 task_id 和状态
4返回等待提示输出:“视频生成中,完成后将自动通知…”
5结束工作流不等待结果,直接结束
3. 回调服务实现(关键组件)
# 回调服务伪代码
@app.get("/check-status/{task_id}")
def check_status(task_id):
    status_data = redis.get(f"task:{task_id}")
    if status_data["status"] == "completed":
        # 触发后续工作流
        coze_client.trigger_workflow(
            workflow_id="downstream-flow",
            input_data={"video_url": status_data["video_url"]}
        )
        return {"status": "completed"}
    return {"status": "processing"}
4. 后续工作流配置
  1. 触发方式:通过 Coze OpenAPI 触发
  2. 输入参数:接收 video_url
  3. 执行操作
    • 视频二次处理
    • 发送结果通知
    • 数据存储等

⚙️ 关键技术保障

1. 状态监控与重试
# 轮询服务添加重试机制
def poll_status(task_id, max_retries=30):
    for _ in range(max_retries):
        status = requests.get(f"/status/{task_id}").json()
        if status["completed"]: 
            return status
        time.sleep(10)  # 每10秒检查一次
    raise TimeoutError("Video generation timeout")
2. **Coze 平台集成要点
  • 使用数据库插件:存储任务状态
    // Coze 数据库操作示例
    await cozeDB.set(`videoTask_${taskId}`, {
      status: "processing",
      startTime: Date.now()
    });
    
  • 配置 Webhook 接收器
    # coze.yaml 配置片段
    webhooks:
      video_callback:
        path: /video-callback
        handler: handleVideoCompletion
    
3. 超时处理方案

在这里插入图片描述

实施示例

  1. 创建视频生成服务(AWS Lambda + S3)
  2. 配置Coze数据库:存储任务状态
  3. 部署回调服务(Vercel Serverless)
  4. 主工作流
    # Coze工作流伪代码
    def main_workflow(image):
        response = http_post("https://video-api/generate", json={"image": image})
        task_id = response['task_id']
        db.save("pending_tasks", task_id, status="processing")
        return "视频生成启动成功!完成后您将收到通知"
    
  5. 后续工作流
    def downstream_workflow(video_url):
        # 添加水印
        watermarked = add_watermark(video_url)
        # 发送给用户
        user.send_message(f"视频已生成:{watermarked}")
    

通过此方案,工作流执行时间从5分钟缩短到秒级,同时确保视频生成完成后自动触发后续操作,完美解决超时问题。实际部署时应根据业务需求添加:

三:最后

还是同步的比较简单,直接在coze 工作流里面就可以搞定了,也不用写代码之类的

### Coze 工作流大模型插件使用说明 #### 创建新工作流 为了创建一个新的Coze工作流并集成大模型插件,需登录到Coze平台,在首页点击新建项目按钮进入创建工作流界面[^2]。 #### 添加大模型插件 在工作流编辑页面内,左侧栏提供了多种类型的组件供选择。对于希望加入的大模型支持,可以在搜索框里输入关键词如“大模型”,找到对应插件后将其拖放到画布中央的工作区完成添加操作。 #### 配置大模型参数 放置好所需的大规模预训练语言模型或其他AI服务之后,双击该标打开配置面板。这里可以根据具体应用场景调整超参设定,比如批次大小(batch size),最大序列(max sequence length)等重要属性来优化性能表现。 #### 编写Python脚本与调用API接口 当涉及到自定义逻辑处理或是更复杂的交互需求时,则可以通过编写Python代码片段的方式进一步增强灵活性。此时应该注意按照官方文档指导正确引入必要的库文件,并利用所提供的SDK封装好的方法发起请求给目标端点获取预测结果返回值[^1]。 ```python import coze_sdk as sdk def predict(text_input): client = sdk.Client(api_key=&#39;your_api_key&#39;) response = client.call_model(model_name="large_language_model", input_data=text_input) return response[&#39;output&#39;] ``` #### 测试运行效果及调试错误信息 保存所做的更改以后就可以立即执行整个流程链路了。如果遇到任何异常情况也不要担心,因为系统会自动捕获日志记录下来帮助定位问题所在位置以便于后续改进措施实施。 #### 发布上线分享成果 最后一步就是对外发布这个精心设计的应用程序啦!只需简单几步即可成唯一的URL链接分发出去让更多的人受益于此创新解决方案所带来的便利之处[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI懒虫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值