一张图理解什么是TP、FN、FP、TN

博客介绍了机器学习中精确率、召回率、准确率和 F1 Score 的计算公式,并通过具体例子进行说明。总样本中实际 P 有 80、N 有 20,预测结果 P 为 90、N 为 10,据此算出精确率 80%、召回率 90%、准确率 74%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  
  
预测
PN
实际PTPFN
NFPTN

精确率:precision = TP / (TP + FP)

召回率:recall = TP / (TP + FN)

准确率:accuracy = (TP + TN) / (TP+ FP + TN + FN)

F1 Score = 2*(P*R)/ (P+R),其中P和R分别为 precision 和recall。

举例

总样本(实际):    P 80, N 20

检测(预测)结果:P 90,其中 72 TP,18 FP(=N); N 10,其中 TN 2,FN(=P) 8

列表如下:

  
  
预测
P 90N 10
实际P 80TP=72FN=8
N 20FP=18TN=2

精确率:precision = TP / (TP + FP) = 72 / (72 + 18) = 80%

召回率:recall = TP / (TP + FN) = 72 / (72 + 8) = 90%

准确率:accuracy = (TP + TN) / (TP+ FP + TN + FN) = 74 / 100 = 74%

### TPFPTNFN 的定义含义 在机器学习领域,特别是分类问题中,评估模型性能的关键指标之一是对预测结果的分析。为了更好地理解这些术语及其意义,以下是它们的具体定义: #### True Positive (TP) True Positive 表示模型正确地将正类样本识别为正类的情况。换句话说,当某个实例实际上是正类时,模型也成功将其预测为正类[^2]。 #### False Positive (FP) False Positive 是指模型错误地将负类样本识别为正类的情形。这种情况通常被称为“误报”,因为模型报告了一个实际上并不存在的事件或条件[^4]。 #### True Negative (TN) True Negative 描述的是模型能够准确判断出某实例属于负类的能力。也就是说,在实际情况下的负类样本被模型正确地标记为负类[^3]。 #### False Negative (FN) False Negative 发生在模型未能发现实际存在的正类现象的时候,也就是把本应标记为正类的对象错判成了负类,这种失误可以称为漏检[^5]。 通过以上四个基本概念,我们可以进一步构建其他重要的评价标准如精确度(Precision),召回率(Recall)以及F1分数等来全面衡量一个分类器的表现如何有效地区分不同类别之间的界限。 ```python def calculate_metrics(tp, fp, tn, fn): precision = tp / (tp + fp) if (tp + fp) != 0 else 0 recall = tp / (tp + fn) if (tp + fn) != 0 else 0 accuracy = (tp + tn) / (tp + fp + tn + fn) if (tp + fp + tn + fn) != 0 else 0 return { 'Precision': precision, 'Recall': recall, 'Accuracy': accuracy } metrics = calculate_metrics(20, 10, 50, 10) print(metrics) ``` 此代码片段展示了基于给定数据计算 Precision(查准率),Recall(查全率)及 Accuracy(准确率)的方法。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值