
能源环境工程
文章平均质量分 68
7zcode
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于LSTM-Adaboost的电力负荷预测
基于长短期记忆(LSTM)网络和自适应增强算法(Adaboost)的电力负荷预测模型。电力负荷预测在电力系统的规划与运行中具有重要意义,然而由于电力负荷数据的复杂性和非线性,单一模型往往难以获得满意的预测精度。LSTM网络在处理时间序列数据方面表现优异,但在某些情况下存在性能瓶颈。为此,我们将Adaboost算法与LSTM结合,通过集成多个弱预测模型,提升整体预测性能。原创 2024-12-17 07:10:03 · 585 阅读 · 0 评论 -
基于Matlab BP神经网络的电力负荷预测模型研究与实现
随着电力系统的复杂性和规模的不断增长,准确的电力负荷预测对于电网的稳定性和运行效率至关重要。传统的负荷预测方法依赖于历史数据和简单的统计模型,但这些方法在处理非线性和动态变化的负荷数据时,表现出较大的局限性。近年来,深度学习和神经网络技术为电力负荷预测提供了新的思路和解决方案。原创 2024-12-02 13:09:19 · 1419 阅读 · 0 评论