当时在做洛谷U389682 最大公约数合并的时候我就想到把每个质因子分解出来然后跑高维前缀和,但是那一道题不是用这个方法,所有我也一直在思考这种做法是不是真的有用。因为昨天通过2024上海大学生程序设计竞赛I-六元组计数这道题我了解到了不少关于原根的性质,所以想着回来做去年网络赛的题目。因为我当时完全不了解原根,因此做不了这个题目,更看不懂题解,但是我现在已经大概掌握原根的知识,所以感觉做这道题还算比较轻松,而且这道题里面刚好就用到了曾经想到的质因数分解+高维前缀和,感觉十分有趣,于是写博客记录。
因为原根的题目一般都喜欢把0先处理掉,然后在处理不为0的情况。
很显然,如果想让左右两边为0,只需要满足 n ∣ x , n ∣ y n|x,n|y n∣x,n∣y,方案数为 ( n − 1 ) 2 (n-1)^2 (n−1)2。
然后我的想法是先列出一个 ( n − 1 ) ∗ ( n − 1 ) (n-1)*(n-1) (n−1)∗(n−1)的表, 1 < = x < = n − 1 , 1 < = y < = n − 1 , a i , j = i j 1<=x<=n-1,1<=y<=n-1,a_{i,j}=i^j 1<=x<=n−1,1<=y<=n−1,ai,j=ij。实际上,表上每一个位置都表示 n ∗ ( n − 1 ) n*(n-1) n∗(n−1)个数,因为实际上它的行坐标可以加上若干个 n n n,列坐标可以加上若干个 n − 1 n-1 n−1。然后就可以发现任意两个值相同的位置(可以一样)都恰好对应了一个解(我也不清楚如果以前没有看过题解能不能想到这一步)。比如两个坐标分别为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2),如果我们想形成一个解,那么就必须要让 x 1 + k 1 n = y 2 + k 2 ( n − 1 ) , y 1 + k 3 ( n − 1 ) = x 2 + k 4 n x_1+k_1n=y_2+k_2(n-1),y_1+k_3(n-1)=x_2+k_4n x1<