数学建模笔记之一起读论文2019年C题——机场出租车问题2

本文解析了2021年全国大学生数学建模竞赛中关于机场接送问题的模型,涉及收益计算、乘客调度与优先权设定。讨论了如何考虑天气、时段因素,以及如何通过引入单位时间收益与油耗转换,平衡短途与长途的收益策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学建模笔记

2021-8-28 全国大学生数学建模竞赛 2019年C题

B站视频链接

问题一:选择模型

核心:收益(成本)计算


其中Q为正常运营的单位时间收益*在机场等待的时间

问题二:问题一+具体事例

视频中没有继续介绍了

问题三:每组乘客上车的时间

K个上车点:

  • k辆车到达乘车区时间:t1+(k-1)*车长*比例系数
  • 每组乘客上车的时间:t2+(k-1))*
  • 启动离开 第K辆车 t3+(k-1)*
  • 安排2k辆车
    运行效率 (T1+T2+T3)/2k

问题四:优先权

设置一个短途往返的时间阈值:2T2

排队T0 载客返回T1 收益P1

  • 正常返回机场的收益:P1/(T0+T1)
  • 短途收益:P2/(T0+T2)
    怎么样去使得收益平衡
    t:短途车返回的等待时长
    考虑到优先等待
    min ⁡ [ P 1 + P 2 T 0 + 2 T 2 + T 1 + t − P 1 T 0 + T 1 ] \min \left[\frac{P_{1}+P_{2}}{T_{0}+2 T_{2}+T_{1}+t}-\frac{P_{1}}{T_{0}+T_{1}}\right] min[T0+2T2+T1+tP1+P2T0+T1P1]

写在后面

将本篇(以下简称B篇)对比一下这一篇(以下简称A篇)
可以看到几个有意思的地方:

 Dis  ×  FuelCost   AvgCost  \frac{\text { Dis } \times \text { FuelCost }}{\text { AvgCost }}  AvgCost  Dis × FuelCost 

  1. 在考虑到在机场的等待时间时,A篇通过往年的历史数据,确定了等待时间,显得有些简单粗暴,而B篇则更清晰地表现出天气、时段、航班等因素对于等待时间的影响;
  2. 在处理问题一时,我们不难发现,A篇看似没有通过引入正常运营状态下的单位收益q0,来计算总收益,从而与R+R0进行比较,而是直接把在机场等待的时间纳入比较,其实,A篇选择了将返回失去的油耗这一考量量转化成了时间。这一波骚操作牛哇!

Dis为返回市区的路程,FuelCost为单位路程的油价,而AvgCost为单位时间的收益,从这个式子可以把油耗转化为可以与时间进行比较的量。A篇的AvgCost其实就是B篇的q0
R 0 ( t ) = { P u T ( T − ω ( t ) ) w ( t ) < T 0 T ˉ ( t ) ⩾ T R_{0}(t)=\left\{\begin{array}{cc} \left.\frac{P_{u}}{T}\left(T-\omega (t\right)\right) & w(t)<T \\ 0 & \bar{T}(t) \geqslant T \end{array}\right. R0(t)={TPu(Tωt))0w(t)<TTˉ(t)T

  1. 在对于返回市区地收益进行思考时,B篇没有考虑返回市区之后接单同样也存在接单等待时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值