- 博客(5)
- 收藏
- 关注
原创 一文讲明白人工智能原理
检索增强生成(Retrieval Augmented Generation),简称 RAG,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为"检索+生成",前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。检索增强生成,要解决两个问题,如何检索和如何生成。
2025-05-08 20:58:17
2247
原创 如何高效地实现文件上传、入库和下载
分片上传就是将源文件切分为若干的分片小文件进行上传,等到所有分片上传完毕后,再将所有分片合并,得到最后的原始文件。
2025-05-05 11:59:56
831
原创 图像处理YUV的详解
文章目录1. 前言2. Y'CbCr详解3. Y'CbCr的编解码3.1 YUV采样3.2 RGB转YUV3.3 YUV转RGB3.4 YUV常见格式3.5 YUV的存储格式3.5.1 planar(平面)3.5.2 packed(打包)4. YUV实战5. 参考文档1. 前言 端午节在慕课网看了李超老师的课程关于YUV的讲解,这里把所学的内容,加上自己的理解进行了整理加工,在这里做个分享。 图像有两种表达方式:RGB和YUV,RGB比较简单,这里不做赘述,今天重点讲YUV,那么既然有了RGB,为
2021-06-13 23:30:51
5235
4
原创 pytorch中的tensorboard使用
pytorch中的tensorboard使用tensorboard介绍tensorboard的安装tensorboard介绍 在训练神经网络时,我们希望能更直观地了解情况,包括损失曲线、输入图片、输出图片、卷积核的参数分布等信息。这些信息能帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的方法就是打印输出,但其职能打印数值信息,不够直观,无法同时查看分布、图片、声音等。不过,我们可以借助于可视化工具Tensorboard来实现以上需求。 PyTorch从1.2.0版本开始,正式
2021-03-13 22:37:48
2385
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人