Python + pandas + 不同客户购买力图形显示

本博客利用Python的pandas库分析`blackFriday.csv`数据,通过数据的三维图形化、相关性热力图展示哪些因素影响购买力。使用corr()函数查看字段间相关性,发现年龄、居住时长与购买力正相关,而产品类别可能有负相关。通过Seaborn的heatmap()和clustermap()进行可视化,进一步理解数据。最后,探讨了3D散点图在分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据源:Kaggle网站上一个“blackFriday.csv”文件( Kaggle网站是一个流行的数据科学竞赛平台),下载下来的数据字段如下:
在这里插入图片描述

本节通过该数据,练习使用数据的三维图形化、相关性及相关性热力图,直观地查看出哪些因素影响购买力,其三维散点图是怎样的。

一、怎样查看哪些因素影响购买力?

方法1:逐一探索各字段对购买力的影响趋势

数据量较小时,可以逐一查看每个字段与购买额字段的相关系数。相关系数较大的,影响力就大。
而本文件数据量较大(53万条),不便直接展示各字段与购买额之间的散点图,所以可将研究字段比如年龄,可以按年龄段分组后取均值,然后再研究。
但该方法需要研究的字段较多,逐一探索的方法效率较低。因此考虑使用方法2。

方法2:使用Dataframe的corr()函数查看各字段之间的相关性

该方法可以更快地分析出各字段之间的相关性,自然也可以看出每个字段与购买额字段的相关系数,从而更快捷、更方便地观察出最具影响力的属性。

二、图形化展示某因素对购买力的影响

根据方法2,逐步在python中实现,步骤如下:

Step1、看各因素之间的相关性

使用pd.read_csv()读入数据,生成DataFrame类型的变量。
使用dataframe.corr(),查看各字段之间的相关性。
【脚本及结果】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值