文章目录
1. SqueezeNet
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size
考虑到卷积层的参数量为 C i n ∗ C o u t ∗ K ∗ K C_{in}*C_{out}*K*K Cin∗Cout∗K∗K,显然,为了减少参数量,可以从输入输出通道数和卷积核尺寸两个角度出发:
- 使用更多的1×1卷积
- 减小3×3卷积的输入核输出通道数
根据以上两个基本原则,SqueezeNet中设计了一个Fire module,squeeze中只使用了1×1卷积,以较少的参数量为代价降低通道数,然后在expand中使用1×1和3×3扩展通道数。
class Fire(nn.Module):
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x):
x = self.squeeze_activation(self.squeeze(x))
return torch.cat(