Eigen概要
Eigen:基于线性代数的C ++模板库,主要用于矩阵,向量,数值求解器和相关算法。
要在C++中使用Eigen,需要在项目路径中包含文件目录,同时在程序开始前要包含所需头文件路径:
#include <Eigen/Dense> using namespace Eigen;
Eigen 库相关模块和头文件
Eigen库被分为一个Core模块和其他一些模块,每个模块有一些相应的头文件。 为了便于引用,Dense模块整合了一系列模块;Eigen模块整合了所有模块。常用模块所在头文件
include<Eigen/Dense>
Eigen库之矩阵
数据类型
Eigen中的矩阵类型一般都是用类似
MatrixNX
来表示,可以根据该名字来判断其大小(2,3,4,或X,意思Dynamic)和数据类型,比如:d:表示double类型 f:表示float类型 i:表示整数 c:表示复数;
举例:
Matrix2f
,表示的是一个2维的,其每个元素都是float
类型。
静态-动态-矩阵
动态矩阵和静态矩阵:动态矩阵是指其大小在运行时确定,静态矩阵是指其大小在编译时确定。
- 静态矩阵:矩阵是静态的,即编译时候就知道运行结果,例如
Matrix3d
:表示元素类型为double大小为3*3的矩阵变量,其大小在编译时就知道。- 动态矩阵:有时候运行完之后,才可以知道,这里使用
MatrixXd
:表示任意大小的元素类型为double的矩阵变量,其大小只有在运行被赋值之后才能知道;
矩阵构造
默认构造,分配了大小和内存空间,但没有初始化矩阵元素(里面的数值是随机的,不能使用):
Matrix3f a; // 3*3的元素,其中还有一个float[9]数组,其中的元素没有初始化; MatrixXf b; // 动态大小的矩阵,目前的大小是0*0,它的元素数组完全没有分配。
对于动态数组,你也可以直接分配大小(失去作用了),同样没有初始化矩阵元素:
MatrixXf a(10, 15);// 10x15动态矩阵,数组内存已经分配,但是没有初始化;
矩阵定义
Eigen::Matrix2d mat // 2维矩阵 Eigen::Matrix3d mat // 3维矩阵 Eigen::Matrix4d mat // 4维矩阵 Eigen::MatrixXd mat(m,n) // 自定义m行,n列矩阵 Eigen::Matrix <double, m, n> mat; // 自定义m行,n列矩阵 Matrix<double, 3, 3> A; // 固定了行数和列数的矩阵和Matrix3d一致. Matrix<double, 3, Dynamic> B; // 固定行数. Matrix<double, Dynamic, Dynamic> C; // 和MatrixXd一致. Matrix<double, 3, 3, RowMajor> E; // 按行存储; 默认按列存储.
矩阵初始化
在构造完后,我们需要对元素进行初始化,常用的是直接赋值:
Eigen::Matrix3f m; m << 1, 2, 3, 4, 5, 6, 7, 8, 9;
它是逐行写入的,这只适用于较小的矩阵:
Eigen::MatrixXd m(3,3); m <<1,2,3, 4,5,6, 7,8,9; //赋值方式1 m(0,1) = 2 //赋值方式2
//赋值方式2 MatrixXd m(2, 2); m(0, 0) = 3; m(1, 0) = 2.5; m(0, 1) = -1; m(1, 1) = m(1, 0) + m(0, 1); cout << m << endl;
特殊矩阵初始化
Eigen::MatrixXd::Identity(m, n); //单位矩阵 Eigen::MatrixXd::Zero(m, n); //全零矩阵 Eigen::MatrixXd::Ones(m, n); //全一矩阵 Eigen::MatrixXd::Random(m, n); //随机矩阵 Matrix3d m; m.setZero(); // 将3x3的矩阵m的所有元素设置为0 //使用方法 先定义:Eigen::Matrix3d mat; 再赋值:mat = Eigen::MatrixXd::Identity(m, n); 4维矩阵(定长):Eigen::Matrix4d mat[10]; //Eigen::Matrix4d mat表示定义了一个包含10个Eigen::Matrix4d对象的数组。 //在Eigen库中,Matrix4d表示一个4x4的矩阵,其元素类型为double。因此,Eigen::Matrix4d mat定义了一个包含10个4x4双精度浮点矩阵的数组。 索引 mat[2](m,n)
Eigen库中的setIdentity()函数用于将矩阵设置为单位矩阵。
在Eigen库中,
setIdentity()
函数用于将一个矩阵设置为单位矩阵。单位矩阵是一个对角线上都是1,其他位置都是0的方阵。例如,对于一个3x3的单位矩阵,其对角线上的元素为1,其余元素为0。使用方法
要使用
setIdentity()
函数,首先需要包含Eigen库的头文件,并创建一个矩阵对象。然后调用setIdentity()
方法,如下所示:#include <iostream> #include <Eigen/Dense> using namespace Eigen; using namespace std; int main() { Matrix3d mat; // 创建一个3x3的动态矩阵 mat.setIdentity(); // 将矩阵设置为单位矩阵 std::cout << mat << std::endl; // 输出单位矩阵 return 0; } 参数和返回值 setIdentity()函数不需要任何参数,因为它直接将矩阵设置为单位矩阵。函数返回一个引用到调用它的矩阵对象,这样可以在设置单位矩阵后继续进行其他操作。
矩阵运算
注意:对于加减乘除运算,定义矩阵/向量时所调用的类,已经将这些基础运算重载过了,只要两边都是符合要求的矩阵/向量类型,就可以直接使用这些操作符进行矩阵运算;
mat.inverse(); //逆矩阵 mat.dot(w); //向量mat点积向量w mat.cross(w); //向量mat叉乘向量w mat.transpose() //转置 mat.norm() //向量求模,矩阵范数
矩阵属性
mat.rows(); //访问矩阵行数 mat.cols(); //访问矩阵列数 mat.block(i,j,m,n) //从矩阵中取块的操作,从(i,j)位置开始,取m×n大小的矩阵 mat.minCoeff(); //输出矩阵中最大的元素 mat.maxCoeff(); //输出矩阵中最小的元素 eg: MatrixXd mMat(4,4); mMat << 11, 10, 13, 15, 3, 24, 56, 1, 2, 12, 45, 0, 8, 5, 6, 4; double min = mMat.minCoeff(); //输出0 double max = mMat.maxCoeff(); //输出56
MatrixXd X2 = MatrixXd::Random(3,3); // 3x3 的随机数矩阵 MatrixXd X3 = MatrixXd::Constant(3,3,1.5) // 3x3 的常量矩阵 MatrixXd X4 = MatrixXd::Zero(4, 4); // 4x4 的全0矩阵 MatrixXd X5 = MatrixXd::Ones(4, 4); // 4x4 的全1矩阵 MatrixXd X6 = X5.resize(2,8); // 调整矩阵的行列 MatrixXd H = MatrixXd::Identity(5, 5); // 5x5 的单位矩阵 int r= H.rows(); //得到矩阵的行数 int c = H.cols(); //得到矩阵的列数 int s = H.size() //得到矩阵元素总个数 5x5=25 MatrixXd K = H.transpose(); // 矩阵求转置 MatrixXd Rinv = R.inverse(); // 矩阵求逆 R(0, 2) = 2; // 矩阵赋值, 第1行, 第 3 列 R(1, 3) = 3; // 矩阵赋值, 第2行, 第 4 列
Eigen库之向量
常用的向量类型有 Vector3d Vector4d VectorXd VectorXcd等。其中VectorXd 表示实数向量,VectorXcd 表示复数向量。
例如列向量:
Vector3f
,其本质也是Matrix
类:typedef Matrix< float, 3, 1 > Vector3f;
行向量
RowVector
:typedef Matrix<int, 1, 2> RowVector2i;
定义向量
Eigen::Vector2d x(1,2) // 2维列向量,并进行初始化 Eigen::Vector3d x(1,2,3) // 3维列向量 Eigen::VectorXd x(n) // 自定义n维列向量 Vector3f x, y, z; // 3x1 float 列向量. RowVector3f a, b, c; // 1x3 float 行向量. VectorXd v; // 动态长度double型列向量
向量初始化
C++ Eigen::VectorXd 赋值 在C++中,使用Eigen库的VectorXd类可以创建和操作n维向量。向VectorXd对象赋值可以通过多种方式实现,以下是一些常见的赋值方法: 直接初始化: Eigen::VectorXd vec1(3); // 创建一个大小为3的列向量3x1 vec1 << 1, 2, 3; // 赋值 使用setOnes,setZeros初始化为全1或全0:Eigen::VectorXd::Zero(n) 来创建一个具有 n 个零元素的向量。 Eigen::VectorXd vec2 = Eigen::VectorXd::Zero(3); // 初始化为全0 vec2.setOnes(); // 设置为全1 Eigen::VectorXd vec1(2); vec1 << 0, 0; // 或者使用 Eigen 的初始化列表 Eigen::VectorXd vec1_alt = Eigen::VectorXd::Zero(2); // 更推荐的方式,直接创建大小为2的零向量 从数组或另一个向量赋值: double array[] = {4, 5, 6}; Eigen::VectorXd vec3 = Eigen::VectorXd(array, 3); // 从数组赋值 Eigen::VectorXd vec4(3); vec4 << 7, 8, 9; Eigen::VectorXd vec5 = vec4; // 从另一个向量赋值 使用fill方法填充: Eigen::VectorXd vec6(3); vec6.fill(10); // 向量中的所有元素都被设置为10 // VectorXd (i) 赋值 VectorXd v(2); v(0) = 1; v(1) = v(0) + 1; std::cout << "Vector v:\n" << v << std::endl;
Vector3d v3d_a = { 1,2,3 }; cout << "Vector3d构造一:\n" << v3d_a << endl; Vector3d v3d_b; v3d_b << 4, 5, 6; cout << "Vector3d构造二:\n" << v3d_b << endl; Vector4d v4d = { 1.1,2.2,3.3,4.4 }; cout << "Vector4d:\n" << v4d << endl; VectorXd vxd(8); //这里一定要指定向量长度,否则报错! vxd << 3, 1, 4, 1, 5, 9, 2, 6; cout << "VectorXd:\n" << vxd << endl; 对于向量,还可以在构造的时候初始化: Vector3d v(1, 2, 3); Vector3d w(1, 0, 0);
向量属性
Eigen::VectorXd x(n) x.size(); //访问向量长度
#include <iostream> #include <Eigen/Dense> using namespace std; using namespace Eigen; int main() { Matrix2d mat; mat << 1, 2, 3, 4; Vector2d u(-1, 1), v(2, 0); cout << "the mat is: \n" << mat << endl; cout << "the u is:\n" << u << endl; cout << "the v is:\n" << v << endl; cout << "Here is mat*mat:\n" << mat*mat << endl; cout << "Here is mat*u:\n" << mat*u << endl; cout << "here is u^T\n" << u.transpose() << endl; cout << "Here is u^T*v:\n" << u.transpose()*v << endl; cout << "Here is u*v^T:\n" << u*v.transpose() << endl; }
向量取值
C Eigen::VectorXd 取第一个元素
在C++中,使用Eigen库的
VectorXd
类型时,可以通过下标访问操作符[]
或者成员函数.x()
来获取向量的第一个元素。下标访问操作符
[]
可以用来获取任意位置的元素,其索引从0开始。例如,获取VectorXd
的第一个元素可以写作:#include <Eigen/Dense> // ... Eigen::VectorXd vector(5); vector << 1, 2, 3, 4, 5; double firstElement = vector[0];
如果你确定向量至少有一个元素,可以使用
.x()
成员函数快速获取第一个元素,这在某些情况下可能更快,因为它不需要索引:#include <Eigen/Dense> // ... Eigen::VectorXd vector(5); vector << 1, 2, 3, 4, 5; double firstElement = vector.x();
请注意,如果向量是空的(大小为0),尝试访问第一个元素将会导致未定义行为。在实际应用中,你应该始终确保向量不是空的,然后再尝试获取其元素。
获取元素
在Eigen库中,
Eigen::VectorXd
是一个动态大小的向量类。要获取向量中的元素,可以使用方括号[]
操作符或.coeff()
成员函数。以下是获取
Eigen::VectorXd
向量中元素的示例代码:#include <Eigen/Dense> #include <iostream> int main() { Eigen::VectorXd vec(3); // 创建一个大小为3的向量 vec(0) = 1; // 设置第一个元素为1 vec(1) = 2; // 设置第二个元素为2 vec(2) = 3; // 设置第三个元素为3 // 使用方括号[]获取元素 std::cout << "第一个元素: " << vec[0] << std::endl; std::cout << "第二个元素: " << vec[1] << std::endl; std::cout << "第三个元素: " << vec[2] << std::endl; // 使用.coeff()获取元素 std::cout << "第一个元素 (coeff): " << vec.coeff(0) << std::endl; std::cout << "第二个元素 (coeff): " << vec.coeff(1) << std::endl; std::cout << "第三个元素 (coeff): " << vec.coeff(2) << std::endl; return 0; }
在这个例子中,我们创建了一个大小为3的
VectorXd
对象,并分别设置了其第一个、第二个和第三个元素的值。然后,我们使用方括号和.coeff()
两种方式来访问和输出这些元素的值。注意:
Eigen::Vector2d x(0)
和x(0,0)
在 Eigen 中都是错误的用法。Eigen::Vector2d
是一个二维的向量类型,它只接受一个参数来初始化向量的大小,并且不接受两个参数。解决方案:
在 Eigen 中,向量的索引是从 0 开始的,所以 x(0) 会返回向量的第一个元素 Eigen::Vector2d x(0); 访问向量的第一个元素: x(0) 访问向量的第二个元素: x(1)
区分矩阵获取元素
eigen::matrix<double,2,1> z 获取元素
在Eigen库中,
Eigen::Matrix<double, 2, 1>
是一个2x1的矩阵,通常用于表示二维向量。要获取这个矩阵的元素,你可以使用数组索引或者使用.x()
和.y()
方法(对于2x1矩阵,只有这两个方法)。以下是一个简单的例子:
#include <Eigen/Dense> #include <iostream> int main() { Eigen::Matrix<double, 2, 1> z; // 定义一个2x1的double类型矩阵 z << 1.0, 2.0; // 初始化矩阵元素 // 使用数组索引获取元素 std::cout << "z[0]: " << z[0] << std::endl; // 输出z的第一个元素 std::cout << "z[1]: " << z[1] << std::endl; // 输出z的第二个元素 // 使用.x()和.y()获取元素 std::cout << "z.x(): " << z.x() << std::endl; // 输出z的x分量 std::cout << "z.y(): " << z.y() << std::endl; // 输出z的y分量 return 0; } 输出: z[0]: 1 z[1]: 2 z.x(): 1 z.y(): 2
请注意,数组索引和
.x()
、.y()
方法提供的元素访问方式是不同的。数组索引对于任意维度的矩阵都适用,而.x()
、.y()
方法只对特定维度的矩阵(例如2x1、2x2、2x3等)有效。
参考:
1、https://zhuanlan.zhihu.com/p/698611962
2、笔记93:关于 C++ 中的 Eigen 库_c++ eigen库-CSDN博客