C++ 之Eigen库常用法回顾总结

Eigen概要

Eigen:基于线性代数的C ++模板库,主要用于矩阵,向量,数值求解器和相关算法。

要在C++中使用Eigen,需要在项目路径中包含文件目录,同时在程序开始前要包含所需头文件路径:

#include <Eigen/Dense>
using namespace Eigen;

Eigen 库相关模块和头文件

Eigen库被分为一个Core模块和其他一些模块,每个模块有一些相应的头文件。 为了便于引用,Dense模块整合了一系列模块;Eigen模块整合了所有模块。常用模块所在头文件include<Eigen/Dense>

Eigen库之矩阵

数据类型

Eigen中的矩阵类型一般都是用类似MatrixNX来表示,可以根据该名字来判断其大小(2,3,4,或X,意思Dynamic)和数据类型,比如:

d:表示double类型
f:表示float类型
i:表示整数
c:表示复数;

举例:Matrix2f,表示的是一个2维的,其每个元素都是float类型。

静态-动态-矩阵

动态矩阵和静态矩阵:动态矩阵是指其大小在运行时确定,静态矩阵是指其大小在编译时确定。

  • 静态矩阵:矩阵是静态的,即编译时候就知道运行结果,例如Matrix3d:表示元素类型为double大小为3*3的矩阵变量,其大小在编译时就知道。
  • 动态矩阵:有时候运行完之后,才可以知道,这里使用MatrixXd:表示任意大小的元素类型为double的矩阵变量,其大小只有在运行被赋值之后才能知道;

矩阵构造

默认构造,分配了大小和内存空间,但没有初始化矩阵元素(里面的数值是随机的,不能使用):

Matrix3f a; // 3*3的元素,其中还有一个float[9]数组,其中的元素没有初始化;
MatrixXf b; // 动态大小的矩阵,目前的大小是0*0,它的元素数组完全没有分配。 

对于动态数组,你也可以直接分配大小(失去作用了),同样没有初始化矩阵元素:

MatrixXf a(10, 15);// 10x15动态矩阵,数组内存已经分配,但是没有初始化;

矩阵定义
 

Eigen::Matrix2d mat                  // 2维矩阵
Eigen::Matrix3d mat                  // 3维矩阵
Eigen::Matrix4d mat                  // 4维矩阵
Eigen::MatrixXd mat(m,n)             // 自定义m行,n列矩阵
Eigen::Matrix <double, m, n> mat;    // 自定义m行,n列矩阵 

Matrix<double, 3, 3> A;                 // 固定了行数和列数的矩阵和Matrix3d一致.
Matrix<double, 3, Dynamic> B;           // 固定行数.
Matrix<double, Dynamic, Dynamic> C;     // 和MatrixXd一致.
Matrix<double, 3, 3, RowMajor> E;       // 按行存储; 默认按列存储.

 矩阵初始化

在构造完后,我们需要对元素进行初始化,常用的是直接赋值:

Eigen::Matrix3f m; 
m << 1, 2, 3, 
     4, 5, 6,    
     7, 8, 9;   

它是逐行写入的,这只适用于较小的矩阵:

Eigen::MatrixXd m(3,3);
m <<1,2,3,
    4,5,6,     
    7,8,9;   //赋值方式1

m(0,1) = 2               //赋值方式2
//赋值方式2
	MatrixXd m(2, 2);
	m(0, 0) = 3;
	m(1, 0) = 2.5;
	m(0, 1) = -1;
	m(1, 1) = m(1, 0) + m(0, 1);

	cout << m << endl;

 特殊矩阵初始化

Eigen::MatrixXd::Identity(m, n);        //单位矩阵
Eigen::MatrixXd::Zero(m, n);            //全零矩阵
Eigen::MatrixXd::Ones(m, n);            //全一矩阵
Eigen::MatrixXd::Random(m, n);          //随机矩阵

Matrix3d m;
m.setZero(); // 将3x3的矩阵m的所有元素设置为0


//使用方法
先定义:Eigen::Matrix3d mat;
再赋值:mat =  Eigen::MatrixXd::Identity(m, n);

4维矩阵(定长):Eigen::Matrix4d mat[10];
//‌Eigen::Matrix4d mat表示定义了一个包含10个Eigen::Matrix4d对象的数组。‌
//在Eigen库中,Matrix4d表示一个4x4的矩阵,其元素类型为double。因此,Eigen::Matrix4d mat定义了一个包含10个4x4双精度浮点矩阵的数组。
索引 mat[2](m,n)

Eigen库中的setIdentity()函数用于将矩阵设置为单位矩阵。

在Eigen库中,setIdentity()函数用于将一个矩阵设置为单位矩阵。单位矩阵是一个对角线上都是1,其他位置都是0的方阵。例如,对于一个3x3的单位矩阵,其对角线上的元素为1,其余元素为0。

使用方法

要使用setIdentity()函数,首先需要包含Eigen库的头文件,并创建一个矩阵对象。然后调用setIdentity()方法,如下所示:

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
using namespace std;

int main() {
    Matrix3d mat; // 创建一个3x3的动态矩阵
    mat.setIdentity(); // 将矩阵设置为单位矩阵
    std::cout << mat << std::endl; // 输出单位矩阵
    return 0;
}

参数和返回值
setIdentity()函数不需要任何参数,因为它直接将矩阵设置为单位矩阵。函数返回一个引用到调用它的矩阵对象,这样可以在设置单位矩阵后继续进行其他操作。

矩阵运算

注意:对于加减乘除运算,定义矩阵/向量时所调用的类,已经将这些基础运算重载过了,只要两边都是符合要求的矩阵/向量类型,就可以直接使用这些操作符进行矩阵运算;

mat.inverse();           //逆矩阵
mat.dot(w);              //向量mat点积向量w
mat.cross(w);            //向量mat叉乘向量w
mat.transpose()          //转置
mat.norm()               //向量求模,矩阵范数


矩阵属性

mat.rows();            //访问矩阵行数
mat.cols();            //访问矩阵列数
mat.block(i,j,m,n)     //从矩阵中取块的操作,从(i,j)位置开始,取m×n大小的矩阵
mat.minCoeff();        //输出矩阵中最大的元素
mat.maxCoeff();        //输出矩阵中最小的元素

eg:

MatrixXd mMat(4,4);
mMat << 11, 10, 13, 15,
		3, 24, 56,	1,
		2, 12, 45,	0,
		8, 5,	6,	4;
double min = mMat.minCoeff();    //输出0
double max = mMat.maxCoeff();    //输出56

    MatrixXd X2 = MatrixXd::Random(3,3);  // 3x3 的随机数矩阵
 
    MatrixXd X3 = MatrixXd::Constant(3,3,1.5)  // 3x3 的常量矩阵
 
    MatrixXd X4 = MatrixXd::Zero(4, 4); // 4x4 的全0矩阵
 
    MatrixXd X5 = MatrixXd::Ones(4, 4); // 4x4 的全1矩阵
    
    MatrixXd X6  =  X5.resize(2,8);  // 调整矩阵的行列
 
    MatrixXd H = MatrixXd::Identity(5, 5); // 5x5 的单位矩阵
 
    int r= H.rows();   //得到矩阵的行数
 
    int c = H.cols();  //得到矩阵的列数
    
    int s = H.size()   //得到矩阵元素总个数 5x5=25
 
    MatrixXd K = H.transpose();  // 矩阵求转置
 
    MatrixXd Rinv =  R.inverse();  // 矩阵求逆
 
    R(0, 2) = 2;  // 矩阵赋值, 第1行, 第 3 列
 
    R(1, 3) = 3; // 矩阵赋值, 第2行, 第 4 列

Eigen库之向量

常用的向量类型有 Vector3d Vector4d VectorXd VectorXcd等。其中VectorXd 表示实数向量,VectorXcd 表示复数向量。

例如列向量:Vector3f ,其本质也是 Matrix 类:

typedef Matrix< float, 3, 1 > Vector3f; 

行向量RowVector

typedef Matrix<int, 1, 2> RowVector2i; 

定义向量

Eigen::Vector2d x(1,2)     // 2维列向量,并进行初始化
Eigen::Vector3d x(1,2,3)   // 3维列向量
Eigen::VectorXd x(n)       // 自定义n维列向量


Vector3f x, y, z;                       // 3x1 float 列向量.
RowVector3f a, b, c;                    // 1x3 float 行向量.
VectorXd v;                             // 动态长度double型列向量
向量初始化
C++ Eigen::VectorXd 赋值
在C++中,使用Eigen库的VectorXd类可以创建和操作n维向量。向VectorXd对象赋值可以通过多种方式实现,以下是一些常见的赋值方法:

直接初始化:
Eigen::VectorXd vec1(3); // 创建一个大小为3的列向量3x1
vec1 << 1, 2, 3;        // 赋值


使用setOnes,setZeros初始化为全1或全0:Eigen::VectorXd::Zero(n) 来创建一个具有 n 个零元素的向量。
Eigen::VectorXd vec2 = Eigen::VectorXd::Zero(3); // 初始化为全0
vec2.setOnes();   // 设置为全1

Eigen::VectorXd vec1(2);
vec1 << 0, 0;
// 或者使用 Eigen 的初始化列表
Eigen::VectorXd vec1_alt = Eigen::VectorXd::Zero(2); // 更推荐的方式,直接创建大小为2的零向量


从数组或另一个向量赋值:
double array[] = {4, 5, 6};
Eigen::VectorXd vec3 = Eigen::VectorXd(array, 3); // 从数组赋值
 
Eigen::VectorXd vec4(3);
vec4 << 7, 8, 9;
Eigen::VectorXd vec5 = vec4; // 从另一个向量赋值


使用fill方法填充:
Eigen::VectorXd vec6(3);
vec6.fill(10); // 向量中的所有元素都被设置为10




// VectorXd (i) 赋值
VectorXd v(2);
v(0) = 1;
v(1) = v(0) + 1;
std::cout << "Vector v:\n" << v << std::endl;
Vector3d v3d_a = { 1,2,3 };
cout << "Vector3d构造一:\n" << v3d_a << endl;

Vector3d v3d_b;
v3d_b << 4, 5, 6;
cout << "Vector3d构造二:\n" << v3d_b << endl;


Vector4d v4d = { 1.1,2.2,3.3,4.4 };
cout << "Vector4d:\n" << v4d << endl;
VectorXd vxd(8); //这里一定要指定向量长度,否则报错!
vxd << 3, 1, 4, 1, 5, 9, 2, 6;
cout << "VectorXd:\n" << vxd << endl;


对于向量,还可以在构造的时候初始化:
Vector3d v(1, 2, 3);
Vector3d w(1, 0, 0);

向量属性

Eigen::VectorXd x(n) 
x.size();            //访问向量长度
#include <iostream>  
#include <Eigen/Dense>  
using namespace std;
using namespace Eigen;
int main()
{
	Matrix2d mat;
	mat << 1, 2,
		3, 4;
	Vector2d u(-1, 1), v(2, 0);
	cout << "the mat is: \n" << mat << endl;
	cout << "the u is:\n" << u << endl;
	cout << "the v is:\n" << v << endl;
	cout << "Here is mat*mat:\n" << mat*mat << endl;
	cout << "Here is mat*u:\n" << mat*u << endl;
	cout << "here is u^T\n" << u.transpose() << endl;
	cout << "Here is u^T*v:\n" << u.transpose()*v << endl;
	cout << "Here is u*v^T:\n" << u*v.transpose() << endl;
}

向量取值

C Eigen::VectorXd 取第一个元素

在C++中,使用Eigen库的VectorXd类型时,可以通过下标访问操作符[]或者成员函数.x()来获取向量的第一个元素。

下标访问操作符[]可以用来获取任意位置的元素,其索引从0开始。例如,获取VectorXd的第一个元素可以写作:

#include <Eigen/Dense>
// ...
Eigen::VectorXd vector(5);
vector << 1, 2, 3, 4, 5;
double firstElement = vector[0];

如果你确定向量至少有一个元素,可以使用.x()成员函数快速获取第一个元素,这在某些情况下可能更快,因为它不需要索引:

#include <Eigen/Dense>
// ...
Eigen::VectorXd vector(5);
vector << 1, 2, 3, 4, 5;
double firstElement = vector.x();

请注意,如果向量是空的(大小为0),尝试访问第一个元素将会导致未定义行为。在实际应用中,你应该始终确保向量不是空的,然后再尝试获取其元素。

获取元素

在Eigen库中,Eigen::VectorXd 是一个动态大小的向量类。要获取向量中的元素,可以使用方括号[]操作符或.coeff()成员函数。

以下是获取Eigen::VectorXd向量中元素的示例代码:

#include <Eigen/Dense>
#include <iostream>
 
int main() {
    Eigen::VectorXd vec(3);  // 创建一个大小为3的向量
    vec(0) = 1;              // 设置第一个元素为1
    vec(1) = 2;              // 设置第二个元素为2
    vec(2) = 3;              // 设置第三个元素为3
 
    // 使用方括号[]获取元素
    std::cout << "第一个元素: " << vec[0] << std::endl;
    std::cout << "第二个元素: " << vec[1] << std::endl;
    std::cout << "第三个元素: " << vec[2] << std::endl;
 
    // 使用.coeff()获取元素
    std::cout << "第一个元素 (coeff): " << vec.coeff(0) << std::endl;
    std::cout << "第二个元素 (coeff): " << vec.coeff(1) << std::endl;
    std::cout << "第三个元素 (coeff): " << vec.coeff(2) << std::endl;
 
    return 0;
}

在这个例子中,我们创建了一个大小为3的VectorXd对象,并分别设置了其第一个、第二个和第三个元素的值。然后,我们使用方括号和.coeff()两种方式来访问和输出这些元素的值。

注意:

Eigen::Vector2d x(0) 和 x(0,0) 在 Eigen 中都是错误的用法。Eigen::Vector2d 是一个二维的向量类型,它只接受一个参数来初始化向量的大小,并且不接受两个参数。

解决方案:

在 Eigen 中,向量的索引是从 0 开始的,所以 x(0) 会返回向量的第一个元素

Eigen::Vector2d x(0);

访问向量的第一个元素:
x(0)

访问向量的第二个元素:
x(1)

区分矩阵获取元素

eigen::matrix<double,2,1> z 获取元素

在Eigen库中,Eigen::Matrix<double, 2, 1> 是一个2x1的矩阵,通常用于表示二维向量。要获取这个矩阵的元素,你可以使用数组索引或者使用.x().y()方法(对于2x1矩阵,只有这两个方法)。

以下是一个简单的例子:

#include <Eigen/Dense>
#include <iostream>
 
int main() {
    Eigen::Matrix<double, 2, 1> z;  // 定义一个2x1的double类型矩阵
    z << 1.0, 2.0;  // 初始化矩阵元素
 
    // 使用数组索引获取元素
    std::cout << "z[0]: " << z[0] << std::endl;  // 输出z的第一个元素
    std::cout << "z[1]: " << z[1] << std::endl;  // 输出z的第二个元素
 
    // 使用.x()和.y()获取元素
    std::cout << "z.x(): " << z.x() << std::endl;  // 输出z的x分量
    std::cout << "z.y(): " << z.y() << std::endl;  // 输出z的y分量
 
    return 0;
}


输出:
z[0]: 1
z[1]: 2
z.x(): 1
z.y(): 2

请注意,数组索引和.x().y()方法提供的元素访问方式是不同的。数组索引对于任意维度的矩阵都适用,而.x().y()方法只对特定维度的矩阵(例如2x1、2x2、2x3等)有效。

参考:

1、https://zhuanlan.zhihu.com/p/698611962

2、笔记93:关于 C++ 中的 Eigen 库_c++ eigen库-CSDN博客

3、[C++]Eigen库常用函数_eigen::vector2d-CSDN博客

4、C++线性代数库Eigen简明教程_c++_蚕与禅-开放原子开发者工作坊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值