传送门
题解:
设 p i p_i pi表示A教授拿走的 i i i号石头的比例,则我们有如下线性规划:
l i m i t s : ∑ i = 1 n p i A i = ∑ i = 1 n ( 1 − p i ) B i p i ≤ 1 p i ≥ 0 m a x i m i z e : ∑ i = 1 n p i A i \begin{aligned} limits:&&&&&&\sum_{i=1}^np_iA_i&=\sum_{i=1}^n(1-p_i)B_i\\ &&&&&&p_i&\leq 1\\ &&&&&&p_i&\geq 0\\ maximize:&&&&&&\sum_{i=1}^n&p_iA_i \end{aligned} limits:maximize:i=1∑npiAipipii=1∑n=i=1∑n(1−pi)Bi≤1≥0piAi
直接把限制放宽至 ∑ i = 1 n p i A i ≤ ∑ i = 1 n ( 1 − p i ) B i \sum_{i=1}^n{p_i}A_i\leq \sum_{i=1}^n(1-p_i)B_i ∑i=1npiAi≤∑i=1n(1−pi)Bi,显然解不变。
于是我们得到一个标准型线性规划,上单纯形,非基变量初始解直接用 0 0 0就行了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const
class PreciousStones{
private:
static cs int N=55;
static constexpr double eps=1e-9,INF=1e17;
int n,m;
double a[N][N];
inline void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;
for(int re j=0;j<=n;++j)a[l][j]/=t;
for(int re i=0;i<=m;++i)if(l!=i&&fabs(a[i][e])>0){
t=a[i][e],a[i][e]=0;
for(int re j=0;j<=n;++j)a[i][j]-=t*a[l][j];
}
}
inline void simplex(){
while(true){
int l=0,e=0;double mn=INF;
for(int re j=1;j<=n;++j)if(a[0][j]>eps){e=j;break;}
if(!e)break;
for(int re i=1;i<=m;++i)
if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
public:
PreciousStones(){}
double value(std::vector<int> A,std::vector<int> B){
n=A.size(),m=n+1;
for(int re i=1;i<=n;++i)a[0][i]=A[i-1];
for(int re i=1;i<=n;++i)a[i][i]=a[i][0]=1;
for(int re i=0;i<n;++i)a[m][0]+=B[i];
for(int re i=1;i<=n;++i)a[m][i]=A[i-1]+B[i-1];
simplex();
if(fabs(a[0][0])<eps)return 0;
return -a[0][0];
}
};
#ifdef zxyoi
PreciousStones Solver;
signed main(){
printf("%.9lf",Solver.value(
{ 11, 9, 13, 10 },
{ 8, 14, 17, 21 }
));
return 0;
}
#endif