【TCO2008】PreciousStones(线性规划)(单纯形)

本文介绍了一种使用线性规划解决教授取石问题的方法,通过将问题转化为标准型线性规划,利用单纯形算法求解最优解。代码实现采用C++,展示了从建立模型到求解全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门


题解:

p i p_i pi表示A教授拿走的 i i i号石头的比例,则我们有如下线性规划:

l i m i t s : ∑ i = 1 n p i A i = ∑ i = 1 n ( 1 − p i ) B i p i ≤ 1 p i ≥ 0 m a x i m i z e : ∑ i = 1 n p i A i \begin{aligned} limits:&&&&&&\sum_{i=1}^np_iA_i&=\sum_{i=1}^n(1-p_i)B_i\\ &&&&&&p_i&\leq 1\\ &&&&&&p_i&\geq 0\\ maximize:&&&&&&\sum_{i=1}^n&p_iA_i \end{aligned} limits:maximize:i=1npiAipipii=1n=i=1n(1pi)Bi10piAi

直接把限制放宽至 ∑ i = 1 n p i A i ≤ ∑ i = 1 n ( 1 − p i ) B i \sum_{i=1}^n{p_i}A_i\leq \sum_{i=1}^n(1-p_i)B_i i=1npiAii=1n(1pi)Bi,显然解不变。

于是我们得到一个标准型线性规划,上单纯形,非基变量初始解直接用 0 0 0就行了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

class PreciousStones{
	private:
		static cs int N=55;
		static constexpr double eps=1e-9,INF=1e17; 
		int n,m;
		double a[N][N];
		inline void pivot(int l,int e){
			double t=a[l][e];a[l][e]=1;
			for(int re j=0;j<=n;++j)a[l][j]/=t;
			for(int re i=0;i<=m;++i)if(l!=i&&fabs(a[i][e])>0){
				t=a[i][e],a[i][e]=0;
				for(int re j=0;j<=n;++j)a[i][j]-=t*a[l][j];
			}
		}
		inline void simplex(){
			while(true){
				int l=0,e=0;double mn=INF;
				for(int re j=1;j<=n;++j)if(a[0][j]>eps){e=j;break;}
				if(!e)break;
				for(int re i=1;i<=m;++i)
				if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
				pivot(l,e);
			}
		}
	public:
		PreciousStones(){}
		double value(std::vector<int> A,std::vector<int> B){
			n=A.size(),m=n+1;
			for(int re i=1;i<=n;++i)a[0][i]=A[i-1];
			for(int re i=1;i<=n;++i)a[i][i]=a[i][0]=1;
			for(int re i=0;i<n;++i)a[m][0]+=B[i];
			for(int re i=1;i<=n;++i)a[m][i]=A[i-1]+B[i-1];
			simplex();
			if(fabs(a[0][0])<eps)return 0;
			return -a[0][0];
		}
};

#ifdef zxyoi

PreciousStones Solver;

signed main(){
	printf("%.9lf",Solver.value(	
{ 11, 9, 13, 10 },
{ 8, 14, 17, 21 }

));
	return 0;
}

#endif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值