2018.09.11【国家集训队】最长双回文子串(manacher)

本文详细介绍Manacher算法的应用,包括如何高效地找出字符串中所有回文子串的最大长度,并通过具体的代码实现来展示整个过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门


解析:

首先,是个人都应该知道要先上个 m a n a c h e r manacher manacher。。。

接下来应该就是枚举每个点为断点,左右分别为回文子串的最长长度。

我们考虑用 a n s l ansl ansl a n s r ansr ansr两个数组分别表示以这个位置为起始、终止位置的极长回文子串长度。

显然最后统计答案就是 O ( n ) O(n) O(n)遍历一下两个数组求最大值。

那么问题来了。
怎么处理出两个数组?
难道每次求出回文串就把包含在内的全部暴力更新?

我们考虑如下方案:
在做 m a n a c h e r manacher manacher的时候只更新该回文串左右端点的答案。

之后 O ( n ) O(n) O(n)递推求出我们需要的 a n s l ansl ansl a n s r ansr ansr部分(代码里面有)。


代码:

#include<bits/stdc++.h>
using namespace std;
#define re register
#define ll long long
#define gc getchar
#define pc putchar
#define cs const
#define st static

cs int N=100005; 
char s[N<<1];
char c[N];
int R[N<<1];
int len,cnt;
int ansl[N<<1],ansr[N<<1];

inline
void manacher(){
    int maxr=0,mid=0;
    for(int re i=1;i<=cnt;++i){
        if(maxr>i)R[i]=min(R[(mid<<1)-i],maxr-i);
        else R[i]=1;
        while(s[i-R[i]]==s[i+R[i]])++R[i];
        if(i+R[i]>maxr)maxr=i+R[i],mid=i;
        ansl[i+R[i]-1]=max(ansl[i+R[i]-1],R[i]-1);
        ansr[i-R[i]+1]=max(ansr[i-R[i]+1],R[i]-1);
    }
    for(int re i=2;i<=cnt;i+=2)ansr[i]=max(ansr[i],ansr[i-2]-2);
    for(int re i=cnt;i>=2;i-=2)ansl[i]=max(ansl[i],ansl[i+2]-2);
}

signed main(){
    scanf("%s",c+1);
    s[++cnt]='&';
    s[++cnt]='#';
    len=strlen(c+1);
    for(int re i=1;i<=len;++i){
        s[++cnt]=c[i];
        s[++cnt]='#';
    }
    len=++cnt;
    manacher();
    int ans=0;
    for(int re i=2;i<=cnt;i+=2){
        ans=max(ans,ansl[i]+ansr[i]);
    }
    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值