最小二乘法(Least Squares)是一种用于数据拟合的数学方法,可以通过最小化观测数据和拟合函数之间的误差平方和,来确定最优拟合参数。下面是用Java实现最小二乘法线性回归的示例代码:
public class LinearRegression {
private double[] xData;
private double[] yData;
private double slope; // 斜率
private double intercept; // 截距
public LinearRegression(double[] xData, double[] yData) {
this.xData = xData;
this.yData = yData;
calculate();
}
private void calculate() {
int n = xData.length;
double sumX = 0, sumY = 0, sumXY = 0, sumX2 = 0;
for (int i = 0; i < n; i++) {
sumX += xData[i];
sumY += yData[i];
sumXY += xData[i] * yData[i];
sumX2 += xData[i] * xData[i];
}
// 计算斜率和截距
slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
intercept = (sumY - slope * sumX) / n;
}
public double predict(double x) {
return slope * x + intercept;
}
public double getSlo