最小二乘法(Least Squares Method)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元最小二乘法)的示例代码。
1. 最小二乘法简介
对于一组数据点 (x1,y1),(x2,y2),…,(xn,yn)(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)(x1,y1),(x2,y2),…,(xn,yn),最小二乘法通过最小化误差平方和来找到最佳拟合直线 y=ax+by = ax + by=ax+b,其中:
- aaa 是斜率
- bbb 是截距
误差平方和 SSS 定义为:
S=∑i=1n(yi−(axi+b))2S = \sum_{i=1}^{n} (y_i - (ax_i + b))^2S=∑i=1n(yi−(axi+b))2
通过求导并设导数为零,可以得到斜率 aaa 和截距 bbb 的公式:
a=n∑xiyi−∑xi∑yin∑xi2−(∑xi)2a = \frac{n\sum{x_i y_i} - \sum{x_i}\sum{y_i}}{n\sum{x_i^2} - (\sum{x_i})^2}a=n∑xi2−(∑xi)2n∑xiyi−∑xi∑yi b=∑yi−a∑xinb = \frac{\sum{y_i} - a\sum{x_i}}{n}b=n∑yi−a∑xi
2. C#实现代码
using System;
using System.Collections.Generic;
using System.Linq;
namespace LeastSquaresMethod
{
class Program
{
static void Main(string[] args)
{
// 示例数据点
List<DataPoint> dataPoints = new List<