C#语言实现最小二乘法算法

最小二乘法(Least Squares Method)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元最小二乘法)的示例代码。

1. 最小二乘法简介

对于一组数据点 (x1,y1),(x2,y2),…,(xn,yn)(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)(x1​,y1​),(x2​,y2​),…,(xn​,yn​),最小二乘法通过最小化误差平方和来找到最佳拟合直线 y=ax+by = ax + by=ax+b,其中:

  • aaa 是斜率
  • bbb 是截距

误差平方和 SSS 定义为:

S=∑i=1n(yi−(axi+b))2S = \sum_{i=1}^{n} (y_i - (ax_i + b))^2S=∑i=1n​(yi​−(axi​+b))2

通过求导并设导数为零,可以得到斜率 aaa 和截距 bbb 的公式:

a=n∑xiyi−∑xi∑yin∑xi2−(∑xi)2a = \frac{n\sum{x_i y_i} - \sum{x_i}\sum{y_i}}{n\sum{x_i^2} - (\sum{x_i})^2}a=n∑xi2​−(∑xi​)2n∑xi​yi​−∑xi​∑yi​​ b=∑yi−a∑xinb = \frac{\sum{y_i} - a\sum{x_i}}{n}b=n∑yi​−a∑xi​​

2. C#实现代码

using System;
using System.Collections.Generic;
using System.Linq;

namespace LeastSquaresMethod
{
    class Program
    {
        static void Main(string[] args)
        {
            // 示例数据点
            List<DataPoint> dataPoints = new List<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亚丁号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值