影刀RPA_批量获取企业工商信息_源码解读

一、项目简介

本项目是一个基于影刀RPA(ShadowBot)平台开发的自动化解决方案,旨在通过机器人流程自动化技术实现业务流程的自动化处理。项目采用Python语言开发,结合影刀RPA特有的流程设计和元素定位技术,实现了一系列自动化操作流程,可有效提高工作效率,减少人工操作错误。

二、项目结构

xbot_robot
├── .dev\                  # 开发相关文件
│   ├── icon\              # 图标资源
│   ├── screenshot\        # 截图资源
│   ├── *.flow.json        # 流程配置文件
│   └── *.pdb              # 流程调试文件
├── __pycache__\           # Python编译缓存
├── resources\             # 项目资源
├── __init__.py            # Python包初始化
├── main.py                # 项目入口文件
├── package.py             # 项目打包配置
├── utils.py               # 通用工具函数
├── process*.py            # 自动化流程实现(process2.py至process14.py)
├── images.xml             # 图像资源配置
├── imagesV2.xml           # 图像资源配置V2
├── selectors.xml          # 元素选择器配置
├── selectorsV2.xml        # 元素选择器配置V2
└── settings.json          # 项目设置

三、项目特点和核心代码

项目特点

  1. 模块化设计:将不同的自动化流程拆分为独立的process文件,便于维护和扩展
  2. 元素定位优化:通过selectors.xml和selectorsV2.xml管理UI元素定位信息
  3. 图像识别支持:集成images.xml配置,支持基于图像的元素识别
  4. 工具函数封装:utils.py提供通用功能封装,减少代码冗余
  5. 多流程支持:包含13个不同的自动化流程(process2-process14)

核心代码示例

1. 主流程控制(main.py)

import xbot
import xbot_visual
from . import package

def main(args):
    try:
        # 依次调用各个子流程
        process_result2 = xbot_visual.process.run(process="process6", package=__name__, inputs={},
            outputs=["dialog_result"], _block=("主流程", 1, "调用流程"))
        _ = xbot_visual.process.run(process="process7", package=__name__, inputs={},
            outputs=[], _block=("主流程", 2, "调用流程"))
        process_result = xbot_visual.process.run(process="process5", package=__name__,
            inputs={"web_page": package.variables['web_page']}, outputs=["loop_index"],
            _block=("主流程", 3, "调用流程"))
        # 更多流程调用...
    finally:
        pass

2. 网页数据抓取与处理(process2.py)

import xbot
import xbot_visual
from . import package

def main(args):
    company_data_list = []
    try:
        # 获取网页对象
        package.variables['web_page'] = xbot_visual.web.get(web_type="cef", mode="activated",
            wait_load_completed=True, load_timeout="20", _block=("B3 单条信息获取", 1, "获取已打开的网页对象"))
        
        # 批量数据抓取
        web_data_table = xbot_visual.web.element.data_scraping(
            browser=package.variables['web_page'], table_element=package.selector("企业工商信息"),
            handle_pager=False, _block=("B3 单条信息获取", 4, "批量数据抓取"))
        
        # 数据清洗与处理
        for loop_item in xbot_visual.workflow.list_iterator(list=web_data_table, loop_start_index="0",
                loop_end_index="-1", _block=("B3 单条信息获取", 12, "ForEach列表循环")):
            # 移除空值和特殊字符
            loop_item = [x.replace('复制','').strip() if x else "空" for x in loop_item]
            
            # 组装字典数据
            assembled_object = xbot_visual.process.run(process="xbot_extensions.shadowbot_list.process9",
                package=__name__, inputs={"list_instance1": table_name, "list_instance2": company_data_list},
                outputs=["assembled_object"], _block=("B3 单条信息获取", 22, "列表组装"))
    finally:
        args["company_data_list"] = company_data_list

3. 通用工具函数(utils.py)

def get_selector(selector_name):
    """根据选择器名称从配置文件中获取对应的选择器"""
    # 从selectors.xml或selectorsV2.xml中读取选择器配置
    # 实现代码...
    return selector

 def click_element(selector):
    """点击指定选择器对应的元素"""
    xbot_visual.mouse.click(selector=selector, click_type="left", _block=("通用操作", 1, "鼠标点击"))
    time.sleep(0.5)

 def input_text(selector, text):
    """向指定选择器对应的输入框输入文本"""
    xbot_visual.keyboard.input_text(selector=selector, text=text, _block=("通用操作", 2, "输入文本"))

四、适用场景

  1. 数据录入自动化:适用于需要将数据从Excel或其他来源录入到业务系统的场景
  2. 网页操作自动化:可实现网页表单填写、数据爬取、按钮点击等操作
  3. 文件处理自动化:支持文件格式转换、内容提取、批量重命名等操作
  4. 重复性任务处理:适用于任何有规律的、重复性的人工操作流程
  5. 跨系统数据同步:可在不同业务系统之间实现数据自动同步

五、常见问题与建议

常见问题

  1. 网页元素定位失败:目标网站界面更新导致selectors.xml或selectorsV2.xml中的选择器失效,特别是process2.py中使用的"企业工商信息"表格选择器
  2. 流程调用依赖错误:main.py中多流程调用(process6→process7→process5→…)时,前序流程失败导致后续流程无法正常执行
  3. 网页数据抓取不完整:网页加载未完成就执行数据抓取(process2.py中的web_data_table获取),导致表格数据缺失

建议

  1. 选择器维护策略

    • 为关键选择器添加版本注释,如<!-- 2023-10-20 更新:适配网站改版 -->
    • 在process2.py中实现选择器自动验证功能,启动时检查关键选择器有效性
    def validate_selectors(): 
        critical_selectors = ["企业工商信息", "登录按钮", "数据表格"]
        for selector in critical_selectors:
            if not xbot_visual.element.exists(package.selector(selector)):
                xbot_visual.log.warning(f"选择器失效: {selector}")
    
  2. 流程调用优化

    • 在main.py的流程调用中添加错误捕获和恢复机制
    try:
        process_result = xbot_visual.process.run(process="process5", ...)
    except Exception as e:
        xbot_visual.log.error(f"process5执行失败: {e}")
        # 尝试恢复机制
        xbot_visual.process.run(process="process5_recovery", ...)
    
  3. 网页数据抓取增强

    • 在process2.py中增加页面加载完成验证
    xbot_visual.web.wait_for_element(package.selector("表格加载完成标志"), timeout=30)
    
  4. 资源管理规范

    • 建立截图文件命名规范:{process_name}_{step}_{timestamp}.png
    • 实现截图自动清理功能,保留最近30天文件
  5. 多版本选择器管理

    • 在package.py中添加选择器版本控制逻辑
    def get_selector(selector_name, version="v2"):
        if version == "v2":
            return selectorsV2[selector_name]
        return selectors[selector_name]
    

六、源码下载

  1. 通过影刀RPA客户端应用市场获取。
  2. 私聊

七、后续扩展方向

  1. 增加流程监控:实现流程执行状态的实时监控和告警
  2. 集成OCR功能:增加光学字符识别能力,处理图片中的文字信息
  3. API接口开发:提供外部调用接口,支持与其他系统集成
  4. 用户界面优化:开发更友好的配置界面,减少手动修改配置文件
  5. AI能力增强:引入机器学习模型,提高复杂场景的自动化处理能力
  6. 移动端支持:扩展支持移动端应用的自动化操作
  7. 多语言支持:增加对多语言界面的适配
### 影刀RPA批量数据采集功能概述 影刀RPA是一款强大的自动化工具,能够实现多种场景下的数据采集工作。其核心优势在于帮助用户节省时间、降低错误率以及提升效率[^1]。具体到批量数据采集方面,影刀RPA可以针对不同类型的网站或平台完成数据抓取任务,例如IC交易网的价格查询、华强交易网的数据采集并发送价格询问[^2],甚至可以从知乎这样的社交平台上自动获取热点回答[^3]。 对于希望利用影刀RPA进行批量数据采集的用户来说,以下是关于如何使用这一功能的一些指导: #### 配置与设置 在启动任何数据采集项目之前,需要先定义目标源(即要从中提取信息的具体位置)。这可能涉及配置URL列表或者指定某些特定页面作为输入参数。此外还需要设定好输出格式以便于后续处理所获得的信息。 #### 自动化脚本编写 为了执行复杂的操作序列比如登录验证、导航至所需部分然后再抽取相关内容等动作,则需创建相应的自动化脚本来描述整个过程逻辑。这些脚本通常由一系列命令组成,每条指令对应着一个具体的交互行为如点击按钮、填写表单字段等等。下面给出了一段简单的Python伪代码示例来展示基本思路: ```python from rpa import RPA def main(): bot = RPA() # 初始化浏览器实例 bot.init_browser() # 访问目标网址 bot.navigate_to("http://example.com") # 登录账户 (如果必要的话) username_field = "#username" password_field = "#password" login_button = ".btn-login" bot.fill(username_field, "your_username") bot.fill(password_field, "your_password") bot.click(login_button) # 定位待采集区域 并读取数据 data_elements = bot.find_all(".data-item") collected_data = [] for element in data_elements: item_text = bot.get_text(element) collected_data.append(item_text) # 存储结果 到文件 或 数据库 中 save_results(collected_data) if __name__ == "__main__": main() ``` 此代码片段仅用于演示目的,在实际部署前还需根据具体情况调整各个细节之处。 #### 执行与监控 一旦完成了上述准备工作之后就可以安排定时计划让程序定期运行从而持续更新数据库中的记录;同时也可以实时查看当前进度状态以确保一切按预期发展下去而不会出现问题中断等情况发生 。值得注意的是 ,在整个生命周期当中都需要保持良好的维护习惯 —— 不断优化现有算法结构使其适应新的需求变化趋势 。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RPA+AI十二工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值