Latex 多行公式等号对齐

本文深入探讨了数学公式在信息技术领域的应用,通过详细解析公式含义,展示其在不同技术分支中的作用与价值,包括前端开发、后端开发、移动开发等。文章结合实例,阐述了数学原理如何推动技术创新,为读者提供了一个全面理解信息技术与数学交叉融合的视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无编号

\begin{align*}
p(f_1=0) &= 0.8/0.9*p(s_1=0)+0.1/0.9*p(s_2=0) \\
&= 0.8/0.9*0.4+0.1/0.9*0.6 \\
&= 0.4222
\end{align*}


[img]http://dl2.iteye.com/upload/attachment/0107/6665/4ea9af03-4258-3423-afa8-0044bf1dd791.jpg[/img]


有编号

\begin{align}
& &-e^{-\Phi} \Phi'(a^3 \Phi v) + e^{-\Phi} \Phi_z(a^3 \Phi v) &= a^5 e^{-\Phi}m_X^2 v + a^5 e^{-\Phi} \frac{\lambda}{2}v^3 \nonumber \\
\Longrightarrow & &- \Phi'(a^3 \Phi v) + \Phi_z(a^3 \Phi v) &= a^5 m_X^2 v + a^5 \frac{\lambda}{2}v^3 \nonumber \\
\Longrightarrow & &a^3 v'(- \Phi') + (a^3 v')' &= a^5 (m_X^2 v + \frac{\lambda}{2}v^3) \\ \label{phi'1}
\Longrightarrow & &a^3 v' - a^5 ( m_X^2 v + \frac{\lambda}{2} v^3 ) &= a^3 v' \Phi'\nonumber
\end{align}


[img]http://dl2.iteye.com/upload/attachment/0107/6667/e272be37-a51f-3a88-b53c-520da4d01e45.jpg[/img]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值