pytorch卷积

卷积核经过的那部分区域,对应位置的数字进行相乘,最后再相加

out_channel:卷积核的个数

out_channel=1时,会有一个卷积核,输出一个矩阵

out_channel=2时,会有两个卷积核,输出两个矩阵

stride代表卷积核每次移动n个格子
padding代表在原矩阵外面填充一圈,一般用0补全

对于最初输入图片样本的通道数 in_channels 取决于图片的类型,如果是彩色的,即RGB类型,这时候通道数固定为3,如果是灰色的,通道数为1

代码如下:

import torch
import torchvision
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        self.conv1(x)
        return x


tudui=Tudui()
print(tudui)

for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(imgs.shape)
    #输出原图的维度[64,3,32,32]分别代表batch-size=64,in_channels=3,32x32的图片
    print(output.shape)
    #卷积之后的维度[64,6,30,30]分别代表batch-size=64,out_channels=6,30x30的图片

输出结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值