pytorch 对已有模型结构进行修改

本文介绍了如何使用PyTorch加载预训练与未预训练的VGG16模型,并展示了如何修改模型结构,包括添加新的全连接层进行迁移学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pretrained=True已经训练好的模型参数,会加载原模型
pretrained=False还未训练好的模型参数,参数为初始化的数据

vgg16分为特征层、平均池化、分类层

 

代码:

import torch
import torchvision
from torch import nn

vgg16_false=torchvision.models.vgg16(pretrained=False)
vgg16_true=torchvision.models.vgg16(pretrained=True)

print(vgg16_true)

#train_data=torchvision.datasets.CIFAR10('')
#在末尾增添一行线性层,降维为10(先输出原模型结构,得到1000这个原维度)
vgg16_true.add_module('add_linear',nn.Linear(1000,10))
print(vgg16_true)

加上最后一层模型如图:

#在classifier层最后面增添一层vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
print(vgg16_true)

图片:

 

修改某一层

vgg16_false.classifier[6]=nn.Linear(4096,10)
print(vgg16_false)

图片:从图1到图2

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值