基于蚁群算法的VLSI规划与自适应滤波技术
1. 引言
VLSI(超大规模集成电路)规划是集成电路设计周期中至关重要的阶段。其主要任务是将模块以矩形形式放置在芯片区域上,最终构建出由水平和垂直分割线划分成多个不相交矩形区域的芯片布局,每个区域对应放置一个模块。VLSI规划问题主要面临两个挑战:一是找到合适的解决方案表示方法,二是构建有效的优化程序来寻找解决方案。
通常,解决方案的表示方法可分为两类:
- 断头台式(Guillotine) :通过递归地用水平和/或垂直切割将矩形分成两部分得到,经典的VLSI规划问题常采用这种结构。
- 非断头台式(Non - Guillotine) :可借助顺序对、切割格、O树、B *树、角模块列表、传递闭包图、广义波兰表达式等实现。
与断头台式规划相比,非断头台式表示法具有更大的解空间,能实现模块更紧凑的排列。不过,断头台式规划也有其优势,如编码成本低、搜索空间小,能更快地完成规划设计,且在处理固定、预放置、灵活和直线型模块时具有灵活性,但在其解空间中可能不存在最优解。
VLSI规划的主要优化标准包括:
- 芯片面积
- 导线长度
- 时间延迟
- 能量消耗
- 温度
其中,主要目标是最小化芯片的总面积。规划问题属于NP问题,近年来,人们提出了多种解决方法,如线性和二次规划、模拟退火、基于约束、力导向范式、基于链表的几何对偶化、层次方法、聚类方法、遗传算法、进化算法、基于搜索适应等。成功的方法大多基于进化建模,而近年来,生物启发模型在解决这类“困难”任务中应用越来