从多任务角度看《Improving Person Re-identification by Attribute and Identity Learning》

  本人重点做的是多任务学习,但是这方面资料有限,进展缓慢,平时做的是人脸属性分析,在查找文献时,偶然看到这篇论文,感觉看起来思想还可以~因为对行人重识别领域没什么了解,所以只从多任务角度来重点记录下这篇论文。

  首先提下这篇文章作者,是一位在UTS在读的博三学生,发过好几篇顶会文章,羡煞我也,主页在此,有很多行人重识别方向的研究,基本都有代码,唯独这篇没有,有点难过!

  下面进入正文,相比之前工作,本篇文章有两方面不同:

  • 文章系统地研究了通过一个联合学习网络,行人重识别任务和属性识别任务怎么互相受益
  • 在先前工作中,属性间的联系很少被考虑,但现实中,对同一个人来说,很多属性经常同时发生

1.本篇文章的贡献:

  • 人工标记了两个数据库的行人属性(在做多任务时候,很多数据库标签有限真的是很苦恼啊,不得不自己想办法打一些标签)
  • 提出了APR框架,做行人识别和属性识别
  • 介绍了属性重权重模块(ARM),根据学到的属性间的依赖和联系来更正属性的预测
  • 提出了属性加速过程,通过用不同属性从搜索的照片中过滤来加速检索过程
  • 在属性识别和行人重识别任务上准确率都得到了提升

2.属性标记

   人为标记了Market-1501和DukeMTMC-reID数据库的属性标签,这两个数据库都是在大学采集的,处于不同季节,Market-1501中很多人穿裙子或短袖,但在DukeMTMC-reID穿长裤。因此,对于两个数据库,采用了不同的属性集。

  属性是根据数据库的特点选择的,所以一个属性的类别标记,比如是否戴帽子,是严重不均衡的。(文中好像也没提怎么缓解这个严重不均衡问题,所以后面将是否戴帽子这个属性去掉后,行人重识别的结果还有上升,是不是和这里的数据严重失衡有关,如何解决?<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值