zzz56
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
23、多参数编程软件与模型研究
本文介绍了多参数编程软件PERSEUS的实现与特点,包括其处理多参数规划问题的流程、参数包络选项及图形用户界面设计。同时,详细探讨了多参数混合整数线性规划算法的步骤及其在多目标三阶段调度问题中的应用。此外,还展示了多个案例研究,包括开环集成规划、调度与最优控制模型以及甲基丙烯酸甲酯(MMA)生产优化的实际应用。通过这些研究和分析,为多参数编程在实际工业优化问题中的应用提供了理论支持和技术手段。原创 2025-07-31 03:56:03 · 31 阅读 · 0 评论 -
22、代数计算与Perseus软件:原理、工具与实现
本文介绍了代数计算中的核心概念——圆柱代数分解(CAD)的原理与实现,并探讨了其在多参数规划问题求解中的应用。文章详细阐述了CAD算法的三个主要阶段:投影阶段、基础阶段和提升阶段,并分析了不同计算机代数工具(如Mathematica、Maple、SageMath等)在Gröbner基和CAD计算方面的功能与特点。随后,文章介绍了基于Python开发的Perseus软件,其通过模块化设计和与SageMath的集成,实现了对多参数规划问题的高效建模与求解。最后,文章展望了Perseus未来的发展方向,包括算法优原创 2025-07-30 10:48:58 · 25 阅读 · 0 评论 -
21、不确定性下控制与过程操作集成及相关代数概念解析
本文探讨了在不确定性环境下控制与过程操作集成的挑战及方法,分析了Benders分解与列和约束生成技术的应用前景,并系统介绍了计算机代数中的核心概念,包括环、域、多项式、理想、簇、Gröbner基和柱形代数分解。同时,文章涵盖了这些数学工具在求解多项式方程组与不等式组中的应用,以及相关算法的计算复杂度和工具选择,为后续研究和实践提供了理论支持与操作指南。原创 2025-07-29 14:06:49 · 25 阅读 · 0 评论 -
20、多参数编程与过程操作控制集成的研究进展与展望
本文综述了多参数编程与不确定条件下过程操作与控制集成的研究进展,并展望了未来的发展方向。研究在多参数编程理论、算法改进和实际应用方面取得了显著成果,特别是在全局不确定性下的求解算法和显式控制器开发方面。同时,在过程操作与控制的集成领域,通过引入多设定点 mp-MPC 和不确定性感知混合框架,有效应对动态干扰和不确定性挑战。尽管取得了一定成果,研究仍面临高算法复杂度、多级优化冲突、不确定性的高效处理以及计算负担等挑战。未来的研究方向包括算法改进、多级与动态优化策略、不确定性分类与数据驱动优化,以及高效的分解技原创 2025-07-28 11:11:38 · 18 阅读 · 0 评论 -
19、不确定性感知集成生产调度与控制的数学建模与计算研究
本研究探讨了不确定性感知集成生产调度与控制的数学建模与计算方法,重点分析了在生产调度中如何感知和应对需求与生产率不确定性的挑战。通过构建优化模型,结合鲁棒优化和机会约束规划方法,研究提出了一种高效求解策略,并采用滚动时域(RH)方法以减少计算负担。通过蒙特卡罗模拟评估不同风险规避水平下的解决方案性能,揭示了在不同问题类别中不确定性优化的价值和潜在权衡。最后,将模型应用于甲基丙烯酸甲酯(MMA)聚合过程的闭环调度控制,验证了其在线实现的可行性与有效性。原创 2025-07-27 15:54:14 · 20 阅读 · 0 评论 -
18、不确定性感知集成的混合框架研究
本文研究了不确定性下规划、调度和控制集成的混合框架,提出了一种结合鲁棒优化、机会约束规划和显式控制方法的整体解决方案。通过滚动时域策略和过程规划的鲁棒优化,有效应对需求不确定性并降低计算复杂度;在调度层面采用机会约束规划处理生产速率的不确定性;在控制层面设计显式控制器以应对LHS不确定性。案例研究表明,该混合框架能够显著提高生产系统的效率和适应性。原创 2025-07-26 14:02:23 · 17 阅读 · 0 评论 -
17、集成规划、调度与控制:应对不确定性的混合框架
本文探讨了在不确定环境下集成规划、调度与控制(iPSC)的混合框架,以MMA聚合反应器为案例研究,展示了如何通过闭环控制和滚动时域规划应对系统干扰。研究引入了多设定点显式控制器和重新调度机制,有效提升了系统在动态干扰下的实时响应能力和生产稳定性。通过对比确定性方案与考虑不确定性的方案,验证了所提方法在利润适应性和干扰应对能力方面的优势。原创 2025-07-25 09:44:10 · 20 阅读 · 0 评论 -
16、闭环集成规划、调度与控制的数学建模及案例分析
本文围绕闭环集成规划、调度与控制(iPSC)的数学建模与实际应用展开,重点探讨如何通过线性元模型和多参数模型预测控制(mp-MPC)应对动态干扰对生产过程的影响。研究通过引入产品复制和动态集合等方法,优化了库存、生产和过渡成本的计算模型,并提出了闭环控制框架下的重新调度机制。以单输入单输出连续搅拌釜式反应器(SISO CSTR)为案例,验证了闭环策略在计算效率、生产稳定性和利润提升方面的显著优势。文章还总结了实际应用建议,并展望了未来在模型优化、多目标控制和分布式控制等方面的研究方向。原创 2025-07-24 13:26:07 · 20 阅读 · 0 评论 -
15、化工生产集成规划、调度与控制:从开环到闭环的探索
本文探讨了化工生产中集成规划、调度与控制(iPSC)的应用,重点比较了开环与闭环方法的性能。通过MMA聚合过程的案例研究,展示了开环iPSC的优化方法和计算结果,并提出了一种应对动态干扰的闭环iPSC框架。闭环框架结合线性元模型和新型多参数非线性模型预测控制器,通过实时监测和优化重新调度,有效提高生产效率和经济效益。研究结果表明,闭环iPSC框架在处理动态干扰和多客户需求方面具有显著优势,为未来化工生产智能化管理提供了新思路。原创 2025-07-23 10:52:34 · 20 阅读 · 0 评论 -
14、开环集成规划、调度与最优控制案例研究
本文通过SISO和MIMO多产品连续搅拌釜式反应器(CSTR)的案例研究,对比分析了整体式(monolithic)和分解式(decomposed)集成规划、调度与最优控制(iPSC)模型的性能。研究发现,分解式iPSC模型在计算效率和求解质量上均优于整体式模型,且旅行商问题(TSP)表述在不同规划周期下的表现优于时间槽表述。文章还探讨了离散化参数选择、元模型构建等实际应用问题,并提出了在工业实践中优先采用分解式iPSC模型和TSP表述的建议,以提升生产效率和经济效益。原创 2025-07-22 16:45:22 · 16 阅读 · 0 评论 -
13、开环规划、调度与最优控制的集成方法解析
本文详细解析了一种开环规划、调度与最优控制的集成方法,旨在提高工业生产的效率并降低成本。文章介绍了目标函数的构建、规划与调度问题的建模、动态优化方法以及各部分之间的关联。同时,讨论了整体集成与分解集成两种方法的特点、适用场景及实际应用注意事项,并通过案例分析比较了两种方法的效果。原创 2025-07-21 12:08:39 · 18 阅读 · 0 评论 -
12、连续过程集成规划、调度与最优控制:方法与应用
本文介绍了集成规划、调度和最优控制(iPSC)在过程工业中的应用,旨在解决传统方法中决策层次分离的问题。通过基于旅行商问题(TSP)的方法,iPSC实现了更高效的生产运营,在计算时间和生产利润方面均表现出显著优势。文章还探讨了未来的研究方向,如不确定性处理、多目标优化和实时调度与控制,为过程工业的智能化发展提供支持。原创 2025-07-20 13:51:13 · 18 阅读 · 0 评论 -
11、多设定点显式控制器的计算研究与性能分析
本文研究了多设定点显式控制器的设计方法与性能表现,通过 SISO CSTR 和 MMA CSTR 案例深入探讨了控制器的设计流程、全局最优性及计算可扩展性。显式控制器在干扰抑制和多设定点跟踪方面表现出色,但其算法可扩展性受非线性项和不确定参数影响较大。未来研究将聚焦于算法改进和不确定性处理,推动其在企业级优化中的应用。原创 2025-07-19 09:44:30 · 14 阅读 · 0 评论 -
10、企业范围优化的精确多设定点显式控制器探索
本文探讨了企业范围优化(EWO)中涉及的多设定点显式控制器设计问题,并提出了一种基于多参数非线性规划(mp-NLP)的解决方案。通过将设定点视为不确定参数,结合一阶KKT条件与Gröbner基方法,实现控制器的高效设计。文章还介绍了该方法在化工生产过程中的潜在应用,展示了其在提升生产效率、保证产品质量和增强系统鲁棒性方面的优势。原创 2025-07-18 15:51:38 · 19 阅读 · 0 评论 -
9、全局不确定性下多参数线性与混合整数线性规划的计算研究
本博文探讨了在全局不确定性下解决多参数线性与混合整数线性规划问题的计算研究。通过多个过程调度案例(如两阶段和三阶段调度问题),验证了所提出算法的适用性和通用性。利用符号操作技术解析求解KKT条件导出的方程组,计算出精确解和非凸临界区域。研究还分析了不确定参数数量、约束数量及变量数量对算法可扩展性的影响,并讨论了底层问题的非凸性及其处理方法。最后,展望了该算法在调度优化和显式模型预测控制等领域的应用潜力。原创 2025-07-17 16:34:54 · 16 阅读 · 0 评论 -
8、多参数线性与混合整数线性规划的全球不确定性研究
本博文研究了多参数线性与混合整数线性规划在全球不确定性下的求解方法。通过将不确定参数和二进制变量视为符号,将原问题转化为松弛的多参数线性规划问题,并基于一阶KKT条件和Gröbner基技术求解得到显式解和临界区域(CR)。多个数值案例和实际问题验证了该方法在处理非凸、不连续和碎片化CR时的有效性与优势。同时,博文也分析了该方法的局限性,并提出了未来研究方向,如算法优化、大规模问题处理及与机器学习的结合。原创 2025-07-16 11:50:51 · 20 阅读 · 0 评论 -
7、全局不确定性下的多参数线性与混合整数线性规划算法解析
本文探讨了在全局不确定性条件下,解决多参数线性规划(mp-LP)和混合整数线性规划(mp-MILP)问题的精确求解算法。通过引入符号操作和半代数几何原理,构建基于Gröbner基和圆柱代数分解(CAD)的算法,能够精确计算非凸临界区域(CR),并提供全局最优显式解。文章详细分析了算法的理论基础、步骤和复杂性,并通过过程合成和零等待调度的应用案例验证了其有效性。这些方法在处理非凸和重叠CR时表现出色,但计算复杂度较高,未来的研究方向包括算法优化、并行计算和实际应用拓展。原创 2025-07-15 16:21:36 · 16 阅读 · 0 评论 -
6、多参数优化问题的复杂性与解决方案
本文详细探讨了多参数优化问题的复杂性及其解决方案,涵盖了多参数线性规划(mp-LP)、多参数混合整数线性规划(mp-MILP)及多参数二次规划(mp-QP)等常见问题类型。文章分析了退化问题的成因与处理方法,讨论了计算复杂性的来源及降低策略,并介绍了当前主流的多参数优化软件工具包。此外,还通过实际应用案例展示了多参数优化在过程合成、模型预测控制和供应链规划等领域的广泛应用前景。原创 2025-07-14 11:18:46 · 28 阅读 · 0 评论 -
5、多参数优化:发展现状与主要应用领域
多参数优化是一种处理具有多种不确定性问题的重要方法,广泛应用于多个领域,如多级优化、模型预测控制、企业范围优化、多目标优化以及其他新兴领域。针对凸问题和非凸问题,研究者提出了多种求解方法,包括外逼近、分支定界、动态优化等。此外,多参数优化在能源系统、生物医学、化工过程、材料设计、代谢网络分析以及机器学习等具体场景中展现了强大的应用潜力。随着研究的深入,多参数优化正成为解决复杂实际问题的关键工具。原创 2025-07-13 15:04:57 · 16 阅读 · 0 评论 -
4、多参数优化:1993年至今的发展与算法
本文综述了自1993年以来多参数优化领域的发展与主要算法。重点介绍了多参数混合整数线性规划(mp-MILP)、多参数混合整数二次规划(mp-MIQP)、多参数线性互补问题(mp-LCP)以及多参数非线性规划(mp-NLP)的研究进展。文章详细讨论了各类问题的数学形式、求解算法、计算复杂性以及应用场景,并对不同算法的优缺点进行了比较。此外,文章还展望了未来多参数优化在算法效率提升、复杂不确定性处理及跨领域应用拓展等方面的发展方向。原创 2025-07-12 15:38:23 · 19 阅读 · 0 评论 -
3、多参数规划:65 年的发展与现状
本文回顾了多参数规划(mp-P)自1950年代以来65年的发展历程,从单参数线性规划的早期研究,到多参数线性、非线性和整数规划的逐步扩展。文章详细介绍了各个阶段的重要研究成果、关键人物及其贡献,并总结了过程系统工程对多参数规划发展的推动作用。此外,还展望了多参数规划未来的几个发展方向,包括算法性能提升、多学科交叉应用、不确定性处理以及实际案例研究。原创 2025-07-11 13:16:47 · 20 阅读 · 0 评论 -
2、过程系统工程中的多参数编程与集成优化框架
本文探讨了过程系统工程中的多参数编程与集成优化框架,重点分析了如何通过多参数编程技术应对过程工业中规划、调度和控制层面的不确定性问题。研究涵盖了从基础理论、算法开发到实际案例研究的多个方面,提出了处理全局不确定性下的多参数线性与非线性规划算法,并开发了基于显式控制器的高效解决方案。此外,还介绍了闭环集成规划与调度(iPSC)以及滚动时域方法在动态干扰下的应用,旨在为过程工业提供更高效、更鲁棒的决策支持工具。原创 2025-07-10 14:07:09 · 18 阅读 · 0 评论 -
1、多参数编程与过程操作控制集成:应对不确定性的创新方案
本文探讨了多参数编程与过程操作控制集成的创新方案,旨在应对过程工业中不确定性环境下的决策挑战。研究涵盖了多参数优化的理论与算法发展、不确定性感知的规划、调度和控制集成方法,以及相关技术在实际案例中的应用。通过提出新的算法和集成框架,如多参数线性和混合整数线性规划、多设定点显式控制器以及不确定性感知的混合框架,解决了过程工业中的复杂决策问题。案例研究表明,这些方法能够显著提高生产效率、系统鲁棒性和适应性,为实际生产提供了更合理的决策依据。原创 2025-07-09 12:45:07 · 13 阅读 · 0 评论