两种dfs写法的比较

序:
近来,做pat发现了两种dfs的写法有些微区别。一种是定长path,用覆盖法深搜;另一种是不定长path,用push_back和pop_back进行回溯。
见下面两个函数:

1.定常path

void dfs(int nodeid, int nodesum, int totalsum)
{   
    //先判断后深搜
    if(totalsum > target) return;
    else if(totalsum == target)
    {
        //若非叶子
        if(v[nodeid].son.size() != 0) return;
        for(int i = 0; i < nodesum; i++)
        {
            if(i != nodesum - 1) cout << v[path[i]].w << " ";
            else cout << v[path[i]].w << endl;
        }
        return;
    }
    else
    {
        for(int i = 0; i < v[nodeid].son.size(); i++)
        {
            int sonnodeid = v[nodeid].son[i];
            path[nodesum] = sonnodeid;
            dfs(sonnodeid, nodesum + 1, totalsum + v[sonnodeid].w);
        }
    }
}

2.不定长path

void dfs(int v)
{
    temppath.push_back(v);
    //如果反向dfs到达起点,已经保证是最短路径
    if(v == 0)
    {
        int need = 0, back = 0;
        //从起点开始遍历
        for(int i = temppath.size() - 1; i >= 0; i--)
        {   
            int id = temppath[i];//注意是temppath对应的序号
            if(weight[id] >= 0)
            {
                back += weight[id];
            }
            else
            {
                //如果back足够抵消亏损
                if(back >= -weight[id])
                    back += weight[id];
                else
                {
                    need += -weight[id] - back;
                    back = 0;
                }
            }
        }
        //与min比较
        if(need < minneed)
        {
            minneed = need;
            minback = back;
            path = temppath;
        }
        else if(need == minneed && back < minback)
        {
            minback = back;
            path = temppath;
        }
        //回溯
        temppath.pop_back();
        return;
    }
    //正常遍历
    for(int i = 0; i < pre[v].size(); i++)
        dfs(pre[v][i]);
    //回溯
    temppath.pop_back();
    return;
}

问题来了:为什么不定长要回溯?

我们通过分析,知道定长的这种写法只有一个变量,覆盖地按顺序深搜。
而不定长的,倘若没有pop_back机制,那么其他解法就会被忽略(如一路多解),因此,在多种的解下必须考虑pop_back。这是为了考虑所有合理解。

总结,定长在遍历中直接进行覆盖;不定长在遍历外push&pop。

### 关于DFS(深度优先搜索)算法的模板与示例代码 #### 深度优先搜索简介 深度优先搜索是一种用于遍历或搜索树或图的数据结构的算法。该方法尝试深入子节点直到达到叶节点或者遇到已经访问过的节点为止,之后再回溯并继续探索其他分支。 对于实现DFS,在编程实践中通常有两种方式:递归和栈迭代。这两种方法都可以有效地完成对整个图或树形结构的遍历操作[^1]。 #### DFS算法模板 ##### 方法一:递归版本 这是最直观的一种写法,通过函数调用来模拟进入下一层的过程: ```python def dfs(node, visited): if node is None or node in visited: return # 访问当前结点的操作 print(f"Visiting {node}") # 将其标记为已访问 visited.add(node) # 对相邻结点执行相同过程 for neighbor in get_neighbors(node): dfs(neighbor, visited) ``` ##### 方法二:基于显式堆栈的非递归版本 当存在非常深的递归层次可能导致栈溢出错误时,可以考虑采用这种方式来代替递归来实现DFS: ```python from collections import deque def iterative_dfs(start_node): stack = [start_node] visited = set() while stack: node = stack.pop() if node not in visited: # 访问当前结点的操作 print(f"Visiting {node}") # 标记为已访问 visited.add(node) # 添加未被访问过邻居到栈顶 neighbors = list(get_neighbors(node)) unvisited_neighbors = [ n for n in reversed(neighbors) if n not in visited] stack.extend(unvisited_neighbors) ``` 上述两种形式都展示了如何利用Python语言特性简洁而高效地编写DFS逻辑。具体应用时可根据实际需求调整`get_neighbors()`函数定义以及处理每个节点的具体行为[^2]。 #### LeetCode实例分析 以LeetCode上的经典题目为例,“组合”问题可以通过DFS解决。给定两个整数n和k,目标是从集合{1,...,n}选取所有大小为k的不同子集。这里提供了一个使用C/C++编写的解决方案框架[^3]: ```cpp class Solution { public: vector<vector<int>> combine(int n, int k) { vector<vector<int>> result; vector<int> path; function<void(int)> backtrack = [&](int start){ // 当路径长度等于所需数量时保存结果 if (path.size() == k){ result.push_back(path); return ; } for (int i=start; i<=n-(k-path.size())+1 ; ++i){ path.push_back(i); // 做选择 backtrack(i + 1); // 进入下一个决策层 path.pop_back(); // 取消选择 } }; backtrack(1); return result; } }; ``` 此段代码片段清晰地体现了DFS的核心思想——即不断做出局部最优的选择直至满足终止条件,并且回退至上一步重新评估其它可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白速龙王的回眸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值