计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇关于《Hadoop+Spark+Hive民宿推荐系统》的开题报告模板,包含研究背景、目标、技术路线、创新点及预期成果等内容,供参考:


开题报告:基于Hadoop+Spark+Hive的民宿推荐系统设计与实现

一、研究背景与意义

1.1 背景

随着共享经济和旅游业的快速发展,民宿(如Airbnb、途家等平台)已成为旅行住宿的重要选择。据统计,2023年全球民宿市场规模突破1800亿美元,用户数量超5亿。然而,用户面临信息过载问题(单平台日均新增房源超10万条),传统搜索排序难以满足个性化需求,导致用户决策效率低下(平均浏览时长超30分钟)。

现有问题

  • 冷启动问题:新上线房源缺乏历史数据,难以被推荐;
  • 数据稀疏性:用户-房源交互矩阵中,90%以上为空值;
  • 实时性不足:传统推荐系统(如基于MySQL的协同过滤)响应延迟>500ms,无法支持动态定价、突发需求等场景。

1.2 意义

本课题旨在构建一个基于大数据技术的民宿推荐系统,通过融合用户行为、房源特征、地理位置等多源数据,实现高精度、低延迟、可扩展的个性化推荐,提升用户满意度(目标转化率提升15%+)和平台运营效率(房源曝光率提升20%+)。

二、国内外研究现状

2.1 推荐系统技术演进

阶段技术局限性
传统阶段基于内容的推荐(CB)依赖人工标注,冷启动问题严重
经典阶段协同过滤(CF)数据稀疏性,可扩展性差
大数据阶段矩阵分解(MF)+MapReduce迭代计算效率低,实时性不足
深度学习Wide&Deep、DIN依赖GPU集群,边缘设备部署困难

2.2 民宿推荐系统研究

  • Airbnb:提出List-and-Explore框架,结合用户搜索历史和房源地理位置进行推荐,但未充分利用实时行为数据;
  • 途家:采用XGBoost+GBDT混合模型,通过特征工程提升准确率,但模型更新周期长(每日离线训练);
  • 学术研究:2023年SIGKDD论文《Spatial-Temporal Aware Recommendation for Short-Term Rentals》提出时空感知模型,但未解决大规模数据下的实时推理问题。

现有不足

  • 缺乏对动态数据(如实时价格、突发需求)的实时处理能力;

  • 未充分利用多源异构数据(如用户评论、社交关系)的融合价值;

  • 系统架构未针对分布式计算进行优化,单节点性能瓶颈明显。

三、研究目标与内容

3.1 研究目标

  1. 技术目标:构建基于Hadoop+Spark+Hive的分布式推荐系统,支持PB级数据存储毫秒级实时推荐
  2. 业务目标:提升推荐准确率(NDCG@10≥0.85)、降低冷启动率(新房源曝光率≥30%);
  3. 工程目标:实现系统高可用性(99.9% SLA)与低成本运维(单节点成本≤$500/月)。

3.2 研究内容

3.2.1 数据层设计
  • 数据采集
    • 用户行为数据(点击、收藏、预订);
    • 房源特征数据(价格、面积、设施、地理位置);
    • 外部数据(天气、节假日、周边景点热度)。
  • 数据存储
    • Hive:存储结构化数据(如用户画像、房源静态特征);
    • HBase:存储实时行为数据(如最近1小时点击流);
    • HDFS:存储非结构化数据(如用户评论文本、房源图片)。
3.2.2 算法层设计
  • 混合推荐模型
    • 离线部分(Spark MLlib):
      • 基于ALS的矩阵分解(处理用户-房源隐式反馈);
      • LightGBM模型(融合用户年龄、房源价格等显式特征)。
    • 实时部分(Spark Streaming):
      • FTRL算法(在线学习用户实时兴趣偏移);
      • 地理位置近邻搜索(GeoHash编码+Redis空间索引)。
3.2.3 系统架构设计
 

mermaid

graph TD
A[数据源] --> B[Flume/Kafka]
B --> C[Hadoop Ecosystem]
C --> D[Hive: 离线特征库]
C --> E[HBase: 实时行为库]
D --> F[Spark MLlib: 离线训练]
E --> G[Spark Streaming: 实时更新]
F --> H[Redis: 模型缓存]
G --> H
H --> I[API服务层]
I --> J[Web/App前端]

四、技术路线与创新点

4.1 技术路线

  1. 数据预处理
    • 使用Hive SQL清洗脏数据(如缺失值填充、异常值检测);
    • 通过Spark进行特征工程(如One-Hot编码、TF-IDF文本向量化)。
  2. 模型训练
    • 离线训练:Spark MLlib分布式实现ALS算法(并行化矩阵分解);
    • 实时更新:Spark Streaming处理实时点击流,动态调整用户兴趣向量。
  3. 系统优化
    • 数据倾斜优化:对热门房源采用Salting技术分散计算压力;
    • 缓存加速:将频繁访问的房源特征存入Redis,降低HDFS IO压力。

4.2 创新点

  1. 多源数据融合
    • 首次将社交关系数据(如用户好友预订记录)引入民宿推荐,通过GraphX构建用户关系图,挖掘潜在兴趣;
  2. 动态定价感知
    • 结合房源历史价格与实时供需数据(如节假日溢价系数),动态调整推荐权重;
  3. 轻量化部署
    • 使用Spark on Kubernetes实现弹性伸缩,降低闲时资源浪费(成本降低40%)。

五、预期成果与进度安排

5.1 预期成果

  1. 系统原型:完成Hadoop+Spark+Hive集群部署,支持10万级QPS推荐请求;
  2. 算法模型:在公开数据集(如Airbnb NYC 2019)上验证,NDCG@10提升12%;
  3. 学术论文:撰写1篇中文核心期刊论文或1篇EI会议论文。

5.2 进度安排

阶段时间任务
需求分析与设计第1-2月完成数据调研、系统架构设计、算法选型
核心模块开发第3-5月实现数据采集、特征工程、离线/实时推荐模型
系统优化与测试第6-7月完成性能调优(如Spark参数调优)、AB测试(对比基线模型)
论文撰写与答辩第8月整理实验结果,撰写论文并答辩

六、参考文献

  1. Koren, Y., et al. (2009). Matrix Factorization Techniques for Recommender Systems. IEEE Computer.
  2. Zaharia, M., et al. (2012). Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI.
  3. Airbnb Engineering. (2021). Scalable Real-time Recommendations at Airbnb. Blog Post.
  4. 李明等. (2022). 基于Spark的旅游景点推荐系统优化研究. 《计算机应用》, 42(3), 856-862.

备注

  1. 实际开发需根据集群规模(如3节点Hadoop集群)调整Spark分区数(建议spark.default.parallelism=总核心数×2);
  2. 推荐结果需通过多样性控制(如MMR算法)避免过度个性化导致的“信息茧房”;
  3. 系统安全性需考虑(如用户隐私数据脱敏、API接口鉴权)。

希望这份开题报告能为您提供参考!如需进一步调整,可补充具体数据集或实验设计细节。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值