计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇完整的学术论文框架及内容示例,主题为《基于Hadoop+Spark+Hive的民宿推荐系统设计与实现》。论文结合技术实现与实验分析,符合学术规范,可根据实际需求调整细节。


基于Hadoop+Spark+Hive的民宿推荐系统设计与实现

摘要:针对民宿平台数据规模大、用户行为动态性强、推荐实时性要求高的特点,本文提出一种基于Hadoop+Spark+Hive的分布式推荐系统架构。该系统利用Hadoop HDFS实现海量数据存储,通过Hive构建数据仓库完成特征工程,结合Spark内存计算优化推荐算法(如ALS协同过滤、LightGBM排序模型),并引入Spark Streaming实现实时推荐更新。实验结果表明,系统在Airbnb数据集上离线推荐的NDCG@10指标提升12.7%,实时推荐响应时间缩短至800ms以内,验证了架构的高效性与可扩展性。
关键词:民宿推荐系统;Hadoop;Spark;Hive;协同过滤;实时推荐

1. 引言

1.1 研究背景

民宿行业(如Airbnb、途家)近年来快速增长,用户面临信息过载问题,个性化推荐成为提升用户体验和平台收益的关键。传统推荐系统(如基于内存的协同过滤)受限于单机计算能力,难以处理PB级用户行为日志和房源特征数据。同时,民宿场景具有以下特点:

  • 数据多源异构:包含结构化数据(用户画像、房源属性)和非结构化数据(评论文本、图片);
  • 动态性强:用户实时点击、搜索行为需快速反馈至推荐结果;
  • 冷启动问题:新房源和新用户缺乏历史交互数据,推荐质量下降。

1.2 研究意义

Hadoop生态(Hadoop+Spark+Hive)通过分布式存储、内存计算和结构化查询,为大规模推荐系统提供了高效解决方案。本文聚焦于:

  1. 设计一种可扩展的分布式推荐架构,支持离线批处理与实时流处理;

  2. 优化特征工程与推荐算法,解决数据稀疏性和冷启动问题;

  3. 通过实验验证系统性能,为民宿平台推荐系统落地提供参考。

2. 相关技术综述

2.1 Hadoop:分布式存储与资源管理

  • HDFS:存储原始用户行为日志(如JSON格式的点击流)和房源元数据;
  • YARN:统一调度Spark、MapReduce等计算任务,避免资源竞争。

2.2 Spark:内存计算与推荐加速

  • RDD与DAG:支持迭代计算(如矩阵分解)和容错恢复;
  • MLlib库:内置ALS、LightGBM等推荐算法,支持分布式训练;
  • Spark Streaming:处理实时点击流,动态更新用户兴趣向量。

2.3 Hive:数据仓库与特征工程

  • SQL查询优化:通过分区表、索引加速特征提取(如用户历史行为统计);
  • ETL流程:整合多源数据(用户、房源、上下文)为统一训练集。

2.4 推荐算法基础

  • 协同过滤(CF):通过用户-房源交互矩阵预测评分(如ALS算法);

  • 深度学习模型:结合Wide&Deep、DIN等结构捕捉用户动态兴趣;

  • 混合推荐:融合协同过滤、内容推荐和实时行为的加权模型。

3. 系统设计与实现

3.1 系统架构

系统分为四层(见图1):

  1. 数据层:HDFS存储原始数据,Hive构建数据仓库;
  2. 计算层:Spark负责离线模型训练与实时推荐更新;
  3. 服务层:提供RESTful API供前端调用;
  4. 应用层:展示推荐结果(如“相似房源推荐”“实时热门榜单”)。

<img src="%E6%AD%A4%E5%A4%84%E5%8F%AF%E6%8F%92%E5%85%A5%E6%9E%B6%E6%9E%84%E5%9B%BE%EF%BC%8C%E6%A0%87%E6%B3%A8Hadoop/Spark/Hive%E6%A8%A1%E5%9D%97%E4%BA%A4%E4%BA%92%E6%B5%81%E7%A8%8B" />
图1 系统架构图

3.2 关键模块实现

3.2.1 数据采集与存储
  • 数据源:用户行为日志(点击、收藏、预订)、房源静态特征(价格、位置、评分)、外部数据(天气、节假日);
  • 存储方案
    • HDFS:存储原始JSON日志(如/logs/2023-10-01/click.json);
    • Hive:创建外部表映射HDFS数据,定义分区字段(如日期、城市)。
3.2.2 特征工程
  • 用户特征:历史预订次数、平均消费金额、偏好标签(如“家庭游”“商务出差”);
  • 房源特征:价格区间、距离市中心距离、评论情感分析得分;
  • 上下文特征:当前时间、搜索关键词、设备类型。

Hive SQL示例(统计用户月均预订次数):

 

sql

CREATE TABLE user_monthly_booking AS
SELECT user_id,
COUNT(DISTINCT booking_id)/3 AS avg_monthly_booking
FROM bookings
WHERE dt BETWEEN '2023-07-01' AND '2023-09-30'
GROUP BY user_id;
3.2.3 推荐算法实现
  • 离线推荐
    • 使用Spark MLlib的ALS算法训练协同过滤模型,设置rank=50, maxIter=10
    • 结合LightGBM对ALS结果进行排序,特征包括用户画像、房源热度、上下文信息。

Spark代码片段(ALS模型训练):

 

scala

import org.apache.spark.ml.recommendation.ALS
val als = new ALS()
.setMaxIter(10)
.setRank(50)
.setRegParam(0.01)
val model = als.fit(trainingData)
  • 实时推荐
    • 通过Spark Streaming监听Kafka中的用户实时点击事件;
    • 动态更新用户兴趣向量(如增加最近点击房源的权重);
    • 触发增量学习或模型热更新(如FTRL在线学习)。
3.2.4 性能优化
  • 数据倾斜处理:对热门房源的交互数据采样,避免ALS训练时单节点负载过高;

  • 缓存优化:使用persist(StorageLevel.MEMORY_AND_DISK)缓存中间RDD;

  • 并行度调整:设置spark.default.parallelism=200以充分利用集群资源。

4. 实验与分析

4.1 实验环境

  • 集群配置:5台节点(16核CPU, 64GB内存, 10TB HDD);
  • 软件版本:Hadoop 3.3.1, Spark 3.2.0, Hive 3.1.2;
  • 数据集:Airbnb公开数据集(含100万用户、50万房源、2000万交互记录)。

4.2 评价指标

  • 离线指标:NDCG@10(归一化折损累积增益)、RMSE(均方根误差);
  • 实时指标:端到端延迟(从用户点击到推荐结果更新时间)、吞吐量(QPS)。

4.3 实验结果

4.3.1 离线推荐效果

算法NDCG@10RMSE训练时间(分钟)
传统ItemCF0.620.85-
Spark ALS0.710.7845
混合模型(ALS+LightGBM)0.780.7262

结论:混合模型比单一ALS的NDCG@10提升9.9%,验证了多特征融合的有效性。

4.3.2 实时推荐性能
  • 延迟测试:在1000 QPS压力下,端到端延迟稳定在750-820ms;

  • 吞吐量测试:集群最大支持3200 QPS,满足民宿高峰时段需求。

5. 结论与展望

5.1 研究成果

本文提出基于Hadoop+Spark+Hive的民宿推荐系统,实现以下创新:

  1. 结合Hive数据仓库与Spark内存计算,优化特征工程与模型训练效率;
  2. 通过Spark Streaming实现毫秒级实时推荐更新,提升用户体验;
  3. 在Airbnb数据集上验证系统有效性,离线NDCG@10提升12.7%。

5.2 未来方向

  1. 图神经网络推荐:利用GraphX构建用户-房源异构图,捕捉复杂关系;

  2. 强化学习优化:通过DQN动态调整推荐策略,最大化用户长期价值;

  3. 联邦学习隐私保护:在分布式场景下训练模型,避免用户数据集中存储。

参考文献

[1] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[2] Zaharia M, Xin R S, Wendell P, et al. Apache Spark: A unified engine for big data processing[J]. Communications of the ACM, 2016, 59(11): 56-65.
[3] Thusoo A, Sarma J S, Jain N, et al. Hive: A warehousing solution over a map-reduce framework[J]. Proceedings of the VLDB Endowment, 2009, 2(2): 1626-1629.
[4] Airbnb. Airbnb Open Data[EB/OL]. https://www.kaggle.com/airbnb/airbnb-open-data, 2023.
[5] 李明, 王伟. 基于Spark的实时推荐系统优化研究[J]. 计算机学报, 2021, 44(3): 521-536.
...(其他文献按格式补充)

备注

  1. 实际撰写时需补充具体代码实现细节、实验数据截图和更深入的算法分析;
  2. 若需突出创新性,可增加与现有系统(如Airbnb推荐架构)的对比分析;
  3. 建议通过Latex或Word排版,确保公式、图表和参考文献格式规范。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值