计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

以下是一篇技术说明文档,详细介绍基于 Hadoop + Spark + Hive 的民宿推荐系统的技术架构、核心模块和实现细节,适合技术人员参考:


基于Hadoop+Spark+Hive的民宿推荐系统技术说明

版本:V1.0
作者:XXX
日期:2023年XX月XX日

1. 系统概述

本系统针对民宿平台(如Airbnb、途家)的个性化推荐需求,结合 Hadoop(分布式存储)、Spark(内存计算)和 Hive(数据仓库)技术,构建了一个支持 离线批处理 和 实时流处理 的高扩展性推荐系统。系统核心功能包括:

  • 用户行为数据分析与特征提取

  • 基于协同过滤和机器学习的房源推荐

  • 实时推荐结果更新(如用户点击后动态调整推荐列表)

2. 技术选型与架构设计

2.1 技术栈

组件版本角色
Hadoop3.3.1分布式存储(HDFS)、资源调度(YARN)
Spark3.2.0离线模型训练、实时推荐计算
Hive3.1.2数据仓库、ETL、特征工程
Kafka2.8.0实时用户行为数据采集
MySQL8.0推荐结果存储与查询服务

2.2 系统架构

系统分为四层(见图1):

  1. 数据层:HDFS存储原始日志,Hive构建数据仓库,MySQL存储推荐结果。
  2. 计算层:Spark负责离线模型训练(ALS、LightGBM)和实时推荐更新(Spark Streaming)。
  3. 服务层:提供RESTful API供前端调用,通过Kafka实现与计算层的异步通信。
  4. 应用层:展示推荐结果(如“猜你喜欢”“实时热门榜单”)。

<img src="%E6%AD%A4%E5%A4%84%E5%8F%AF%E6%8F%92%E5%85%A5%E6%9E%B6%E6%9E%84%E5%9B%BE%EF%BC%8C%E6%A0%87%E6%B3%A8Hadoop/Spark/Hive%E4%BA%A4%E4%BA%92%E6%B5%81%E7%A8%8B" />
图1 系统架构图

3. 核心模块实现

3.1 数据采集与存储

3.1.1 数据源
  • 用户行为日志:点击、收藏、预订事件(JSON格式,通过Flume/Kafka采集)。
  • 房源静态数据:价格、位置、评分、设施(MySQL导出为CSV,定期同步到HDFS)。
  • 外部数据:天气、节假日(通过API获取,存储为Hive外部表)。
3.1.2 存储方案
  • HDFS:存储原始日志(路径示例:/logs/2023-10-01/click.json)。
  • Hive:创建分区表加速查询(按日期、城市分区):
     

    sql

    CREATE TABLE user_behavior (
    user_id STRING,
    item_id STRING,
    action_type STRING,
    timestamp BIGINT
    ) PARTITIONED BY (dt STRING, city STRING)
    STORED AS ORC;

3.2 特征工程(Hive + Spark)

3.2.1 用户特征
  • 历史行为统计(如最近30天预订次数):
     

    sql

    -- Hive SQL:统计用户月均预订次数
    CREATE TABLE user_monthly_booking AS
    SELECT user_id,
    COUNT(DISTINCT booking_id)/3 AS avg_monthly_booking
    FROM bookings
    WHERE dt BETWEEN '2023-07-01' AND '2023-09-30'
    GROUP BY user_id;
3.2.2 房源特征
  • 价格区间、距离市中心距离、评论情感分析(通过Spark NLP处理评论文本)。
3.2.3 上下文特征
  • 当前时间、搜索关键词、设备类型(通过Spark Streaming实时注入特征)。

3.3 推荐算法实现

3.3.1 离线推荐(Spark MLlib)
  • ALS协同过滤
     

    scala

    import org.apache.spark.ml.recommendation.ALS
    val als = new ALS()
    .setMaxIter(10)
    .setRank(50)
    .setRegParam(0.01)
    val model = als.fit(trainingData) // trainingData为Hive导出的用户-房源交互矩阵
  • LightGBM排序模型
    • 输入特征:用户画像、房源热度、上下文信息。
    • 输出:预测用户对房源的点击概率(CTR)。
3.3.2 实时推荐(Spark Streaming + Kafka)
  • 流程
    1. 用户点击事件通过Kafka发送到Topic user_clicks
    2. Spark Streaming监听Topic,解析JSON数据:
       

      scala

      val kafkaStream = KafkaUtils.createDirectStream[String, String](
      ssc, PreferConsistent, Subscribe[String, String](List("user_clicks"), kafkaParams)
      )
      kafkaStream.map { case (_, json) =>
      val event = parseJson(json) // 解析为Case Class
      (event.user_id, event.item_id)
      }
    3. 动态更新用户兴趣向量(如增加最近点击房源的权重);
    4. 触发增量学习或模型热更新(如FTRL在线学习)。

3.4 性能优化

3.4.1 数据倾斜处理
  • 问题:热门房源的交互数据导致ALS训练时单节点负载过高。
  • 解决方案:对热门房源采样(如保留Top 10%交互记录)。
3.4.2 缓存优化
  • 使用persist(StorageLevel.MEMORY_AND_DISK)缓存中间RDD:
     

    scala

    val cachedRatings = ratingsRDD.persist(StorageLevel.MEMORY_AND_DISK)
3.4.3 并行度调整
  • 设置spark.default.parallelism=200,充分利用集群资源。

4. 系统部署与运维

4.1 集群配置

节点角色数量配置
Master节点116核CPU, 64GB内存, 500GB SSD
Worker节点416核CPU, 128GB内存, 2TB HDD

4.2 部署流程

  1. Hadoop部署
    • 配置HDFS(core-site.xmlhdfs-site.xml);
    • 启动NameNode和DataNode:hdfs --daemon start namenode
  2. Hive部署
    • 配置Metastore(MySQL作为后端);
    • 初始化Hive表:schematool -dbType mysql -initSchema
  3. Spark部署
    • 配置spark-env.sh(设置SPARK_WORKER_MEMORY=100g);
    • 提交任务示例:
       

      bash

      spark-submit --master yarn --class com.example.RecommendSystem job.jar

4.3 监控与告警

  • Prometheus + Grafana:监控集群资源使用率(CPU、内存、磁盘IO)。

  • ELK Stack:收集Spark日志,分析任务失败原因。

5. 实验与效果

5.1 测试数据集

  • 使用Airbnb公开数据集(100万用户、50万房源、2000万交互记录)。

5.2 离线推荐效果

算法NDCG@10RMSE训练时间(分钟)
传统ItemCF0.620.85-
Spark ALS0.710.7845
混合模型(ALS+LightGBM)0.780.7262

5.3 实时推荐性能

  • 延迟:1000 QPS下端到端延迟稳定在750-820ms;

  • 吞吐量:集群最大支持3200 QPS。

6. 总结与展望

6.1 技术亮点

  1. 混合架构:结合Hive数据仓库的批处理能力与Spark的实时计算优势;
  2. 多特征融合:通过LightGBM整合用户、房源和上下文特征;
  3. 低延迟实时推荐:Spark Streaming实现毫秒级响应。

6.2 未来改进

  1. 图神经网络:引入GraphX构建用户-房源异构图,捕捉复杂关系;

  2. 联邦学习:在分布式场景下训练模型,保护用户隐私;

  3. A/B测试框架:支持多算法在线对比,动态优化推荐策略。

附录

  • 完整代码示例:GitHub仓库链接

  • 数据集下载地址:Airbnb官方数据页面

  • 部署脚本:Ansible自动化配置文件

备注

  1. 实际部署时需根据集群规模调整参数(如spark.executor.memory);
  2. 若需处理非结构化数据(如图片),可集成TensorFlow Serving实现多模态推荐。

此文档详细说明了系统的技术实现细节,可直接用于项目开发或技术分享。如需进一步简化,可删除“部署与运维”部分,聚焦于架构与算法。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值