温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
以下是一篇技术说明文档,详细介绍基于 Hadoop + Spark + Hive 的民宿推荐系统的技术架构、核心模块和实现细节,适合技术人员参考:
基于Hadoop+Spark+Hive的民宿推荐系统技术说明
版本:V1.0
作者:XXX
日期:2023年XX月XX日
1. 系统概述
本系统针对民宿平台(如Airbnb、途家)的个性化推荐需求,结合 Hadoop(分布式存储)、Spark(内存计算)和 Hive(数据仓库)技术,构建了一个支持 离线批处理 和 实时流处理 的高扩展性推荐系统。系统核心功能包括:
-
用户行为数据分析与特征提取
-
基于协同过滤和机器学习的房源推荐
-
实时推荐结果更新(如用户点击后动态调整推荐列表)
2. 技术选型与架构设计
2.1 技术栈
组件 | 版本 | 角色 |
---|---|---|
Hadoop | 3.3.1 | 分布式存储(HDFS)、资源调度(YARN) |
Spark | 3.2.0 | 离线模型训练、实时推荐计算 |
Hive | 3.1.2 | 数据仓库、ETL、特征工程 |
Kafka | 2.8.0 | 实时用户行为数据采集 |
MySQL | 8.0 | 推荐结果存储与查询服务 |
2.2 系统架构
系统分为四层(见图1):
- 数据层:HDFS存储原始日志,Hive构建数据仓库,MySQL存储推荐结果。
- 计算层:Spark负责离线模型训练(ALS、LightGBM)和实时推荐更新(Spark Streaming)。
- 服务层:提供RESTful API供前端调用,通过Kafka实现与计算层的异步通信。
- 应用层:展示推荐结果(如“猜你喜欢”“实时热门榜单”)。
<img src="%E6%AD%A4%E5%A4%84%E5%8F%AF%E6%8F%92%E5%85%A5%E6%9E%B6%E6%9E%84%E5%9B%BE%EF%BC%8C%E6%A0%87%E6%B3%A8Hadoop/Spark/Hive%E4%BA%A4%E4%BA%92%E6%B5%81%E7%A8%8B" />
图1 系统架构图
3. 核心模块实现
3.1 数据采集与存储
3.1.1 数据源
- 用户行为日志:点击、收藏、预订事件(JSON格式,通过Flume/Kafka采集)。
- 房源静态数据:价格、位置、评分、设施(MySQL导出为CSV,定期同步到HDFS)。
- 外部数据:天气、节假日(通过API获取,存储为Hive外部表)。
3.1.2 存储方案
- HDFS:存储原始日志(路径示例:
/logs/2023-10-01/click.json
)。 - Hive:创建分区表加速查询(按日期、城市分区):
sql
CREATE TABLE user_behavior (
user_id STRING,
item_id STRING,
action_type STRING,
timestamp BIGINT
) PARTITIONED BY (dt STRING, city STRING)
STORED AS ORC;
3.2 特征工程(Hive + Spark)
3.2.1 用户特征
- 历史行为统计(如最近30天预订次数):
sql
-- Hive SQL:统计用户月均预订次数
CREATE TABLE user_monthly_booking AS
SELECT user_id,
COUNT(DISTINCT booking_id)/3 AS avg_monthly_booking
FROM bookings
WHERE dt BETWEEN '2023-07-01' AND '2023-09-30'
GROUP BY user_id;
3.2.2 房源特征
- 价格区间、距离市中心距离、评论情感分析(通过Spark NLP处理评论文本)。
3.2.3 上下文特征
- 当前时间、搜索关键词、设备类型(通过Spark Streaming实时注入特征)。
3.3 推荐算法实现
3.3.1 离线推荐(Spark MLlib)
- ALS协同过滤:
scala
import org.apache.spark.ml.recommendation.ALS
val als = new ALS()
.setMaxIter(10)
.setRank(50)
.setRegParam(0.01)
val model = als.fit(trainingData) // trainingData为Hive导出的用户-房源交互矩阵
- LightGBM排序模型:
- 输入特征:用户画像、房源热度、上下文信息。
- 输出:预测用户对房源的点击概率(CTR)。
3.3.2 实时推荐(Spark Streaming + Kafka)
- 流程:
- 用户点击事件通过Kafka发送到Topic
user_clicks
; - Spark Streaming监听Topic,解析JSON数据:
scala
val kafkaStream = KafkaUtils.createDirectStream[String, String](
ssc, PreferConsistent, Subscribe[String, String](List("user_clicks"), kafkaParams)
)
kafkaStream.map { case (_, json) =>
val event = parseJson(json) // 解析为Case Class
(event.user_id, event.item_id)
}
- 动态更新用户兴趣向量(如增加最近点击房源的权重);
- 触发增量学习或模型热更新(如FTRL在线学习)。
- 用户点击事件通过Kafka发送到Topic
3.4 性能优化
3.4.1 数据倾斜处理
- 问题:热门房源的交互数据导致ALS训练时单节点负载过高。
- 解决方案:对热门房源采样(如保留Top 10%交互记录)。
3.4.2 缓存优化
- 使用
persist(StorageLevel.MEMORY_AND_DISK)
缓存中间RDD:scala
val cachedRatings = ratingsRDD.persist(StorageLevel.MEMORY_AND_DISK)
3.4.3 并行度调整
-
设置
spark.default.parallelism=200
,充分利用集群资源。
4. 系统部署与运维
4.1 集群配置
节点角色 | 数量 | 配置 |
---|---|---|
Master节点 | 1 | 16核CPU, 64GB内存, 500GB SSD |
Worker节点 | 4 | 16核CPU, 128GB内存, 2TB HDD |
4.2 部署流程
- Hadoop部署:
- 配置HDFS(
core-site.xml
,hdfs-site.xml
); - 启动NameNode和DataNode:
hdfs --daemon start namenode
。
- 配置HDFS(
- Hive部署:
- 配置Metastore(MySQL作为后端);
- 初始化Hive表:
schematool -dbType mysql -initSchema
。
- Spark部署:
- 配置
spark-env.sh
(设置SPARK_WORKER_MEMORY=100g
); - 提交任务示例:
bash
spark-submit --master yarn --class com.example.RecommendSystem job.jar
- 配置
4.3 监控与告警
-
Prometheus + Grafana:监控集群资源使用率(CPU、内存、磁盘IO)。
-
ELK Stack:收集Spark日志,分析任务失败原因。
5. 实验与效果
5.1 测试数据集
- 使用Airbnb公开数据集(100万用户、50万房源、2000万交互记录)。
5.2 离线推荐效果
算法 | NDCG@10 | RMSE | 训练时间(分钟) |
---|---|---|---|
传统ItemCF | 0.62 | 0.85 | - |
Spark ALS | 0.71 | 0.78 | 45 |
混合模型(ALS+LightGBM) | 0.78 | 0.72 | 62 |
5.3 实时推荐性能
-
延迟:1000 QPS下端到端延迟稳定在750-820ms;
-
吞吐量:集群最大支持3200 QPS。
6. 总结与展望
6.1 技术亮点
- 混合架构:结合Hive数据仓库的批处理能力与Spark的实时计算优势;
- 多特征融合:通过LightGBM整合用户、房源和上下文特征;
- 低延迟实时推荐:Spark Streaming实现毫秒级响应。
6.2 未来改进
-
图神经网络:引入GraphX构建用户-房源异构图,捕捉复杂关系;
-
联邦学习:在分布式场景下训练模型,保护用户隐私;
-
A/B测试框架:支持多算法在线对比,动态优化推荐策略。
附录:
-
完整代码示例:GitHub仓库链接
-
数据集下载地址:Airbnb官方数据页面
-
部署脚本:Ansible自动化配置文件
备注:
- 实际部署时需根据集群规模调整参数(如
spark.executor.memory
); - 若需处理非结构化数据(如图片),可集成TensorFlow Serving实现多模态推荐。
此文档详细说明了系统的技术实现细节,可直接用于项目开发或技术分享。如需进一步简化,可删除“部署与运维”部分,聚焦于架构与算法。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻