Ascend C算子开发(入门)——什么是Ascend C?

在这里插入图片描述
在这里插入图片描述

Ascend C算子开发(入门)——什么是Ascend C?

一、CANN与Ascend C

CANN的全称是Computer Architecture For Neural Network,适用于为神经网络加速计算,Ascend C是主要编程模块,可实现图开发、算子开发、应用开发等,MindStudio是全流程开发的工具链。

在这里插入图片描述

在这里插入图片描述

二、昇腾(Ascend)AI处理器

在这里插入图片描述

  • 进程运行在Control CPU上

在这里插入图片描述

在设计算子时,要考虑数据从外部如何进入AI Core里面,放在哪里,需要放在哪个计算单元做计算,计算之后如何做同步,同步完之后如何传出。

在这里插入图片描述

耦合架构和分离架构的核心在于判断向量计算单元和矩阵计算单元是否放在一个内核里。

三、Ascend C的特点
  • 采用标准C++语法,基于类库API进行编程
    • 基础API
      • C++类库API
    • 高阶API
      • 神经网络算子库
      • 数学计算算子库
      • 大型融合算子库:Flash Attention

在这里插入图片描述

  • 核间支持SPMD数据并行,充分利用AI Core多核计算资源

    只需要针对单核算子进行开发,写一段算子代码,给不同的数据块在不同的AI Core上执行。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

<think>好的,我现在需要回答用户关于Ascend C算子TBE算子之间的差异、特点对比的问题。首先,我需要回顾一下用户提供的引用资料,看看里面有没有相关的信息。 根据引用[1]、[2]、[3]、[4],这些引用主要提到了TBE算子开发流程,比如使用TVM的placeholder,Caffe框架中的自定义算子定义,以及TBE算子开发、测试部署步骤。特别是引用[3][4]详细描述了TBE算子开发过程,包括本地远程部署的方法,构建工程,头文件路径设置等。而Ascend C算子可能涉及到不同的开发方式或工具链,但用户提供的引用中没有直接提到Ascend C算子的具体内容,可能需要依靠我的现有知识来补充。 首先,我需要明确Ascend C算子TBE算子的定义用途。TBE算子(Tensor Boost Engine)是华为昇腾AI处理器上用于自定义算子开发的框架,基于TVM(Tensor Virtual Machine)进行开发,支持动态shape自动微分等功能。而Ascend C是华为昇腾计算架构中的C/C++编程接口,允许开发者更底层地编写算子,可能提供更高的灵活性性能优化空间,但开发复杂度也更高。 接下来,我应该从以下几个方面进行对比: 1. **开发语言接口**: - TBE算子使用PythonTVM的DSL(领域特定语言)进行开发,可能更易于上手,适合快速实现常见算子。 - Ascend C可能使用C/C++,直接调用底层硬件指令,适合需要高性能优化的场景。 2. **开发复杂度**: - TBE提供了更高层次的抽象,自动处理内存管理并行优化,可能减少代码量。 - Ascend C需要手动管理内存并行计算,开发者需要更深入了解硬件架构,代码复杂度更高。 3. **性能优化**: - TBE算子可能受限于框架的自动优化能力,对于极端性能需求可能不够灵活。 - Ascend C允许更细粒度的控制,可能实现更高的性能,但需要更多优化工作。 4. **应用场景**: - TBE适合大多数常见的深度学习算子开发,尤其是需要快速迭代的情况。 - Ascend C适合对性能要求极高、需要定制化硬件指令的复杂算子,如特殊的数据处理或算法。 5. **部署兼容性**: - TBE算子部署流程在引用[4]中有详细描述,包括本地远程部署,可能需要特定的环境配置。 - Ascend C算子可能需要编译成更底层的二进制代码,部署步骤可能不同,但用户提供的引用中没有具体信息,需要假设或补充。 需要注意的是,用户提供的引用主要围绕TBE算子开发,可能没有涵盖Ascend C的细节。因此,在回答时需要明确说明差异,并指出Ascend C的底层特性。此外,可能需要提醒用户参考官方文档以获得更准确的信息,因为不同版本的框架可能有变化。 最后,生成相关问题时要围绕两者的开发方式、性能、使用场景等方面提问,帮助用户深入理解。</think>### Ascend C算子与TBE算子的对比分析 #### 1. **定义与开发接口** - **TBE算子** 基于华为昇腾的Tensor Boost Engine(TBE)框架开发,使用Python语言结合TVM的领域特定语言(DSL)进行编程。开发者通过封装好的接口描述算子的计算逻辑,框架会自动完成内存分配并行优化[^3][^4]。 示例代码片段(TVM风格): ```python data = tvm.placeholder(shape, name="data", dtype=input_dtype) # 输入占位符定义[^1] ``` - **Ascend C算子** 基于昇腾的C/C++编程接口,直接调用底层硬件指令(如向量化计算、AI Core指令),需手动管理内存并行计算。适合需要极致性能的场景,但开发复杂度较高。 #### 2. **开发复杂度** - **TBE算子** - **优点**:高层抽象,自动优化计算图,适合快速开发常见算子(如卷积、矩阵乘)。 - **缺点**:灵活性受限,难以实现特殊硬件指令或复杂数据流控制。 - **Ascend C算子** - **优点**:完全控制硬件资源,可定制化程度高(如自定义流水线并行)。 - **缺点**:需深入理解昇腾架构(如AI Core、内存层级),代码量大且调试困难。 #### 3. **性能优化能力** - **TBE算子** 依赖框架的自动优化策略,例如自动选择计算块大小(tiling)内存搬运策略。适合通用场景,但对极端性能需求(如低延迟推理)可能不足[^4]。 - **Ascend C算子** 支持手动优化: - 显式指定AI Core的并行流水线。 - 精细控制缓存复用(如Local Memory与Global Memory交互)。 - 直接调用硬件指令(如矩阵乘加速指令)。 #### 4. **应用场景** - **TBE算子** 适合标准深度学习算子(如激活函数、归一化)或需要快速迁移现有模型到昇腾平台的场景。 - **Ascend C算子** 适合以下场景: - 高性能计算需求(如自定义稀疏矩阵运算)。 - 非标准算子(如特殊数据预处理)。 - 需要与硬件特性深度绑定的优化(如利用AI Core的特定指令)。 #### 5. **部署流程** - **TBE算子** 通过MindStudio工具链完成构建部署,支持本地与远程调试。例如: ```bash # 本地部署路径示例 ASCEND_TENSOR_COMPILER_INCLUDE=/usr/local/Ascend/ascend-toolkit/7.0.RC1/aarch64-linux/include[^4] ``` - **Ascend C算子** 需编译为二进制文件(如.so库),并通过昇腾运行时(如ACL)加载。部署时需确保目标设备的指令集兼容性。 #### 6. **生态支持** - **TBE算子** 与主流框架(如TensorFlow、PyTorch)集成较好,支持通过适配器生成Caffe格式插件[^2]。 - **Ascend C算子** 更偏向底层,通常用于华为自有生态(如MindSpore的定制化后端)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Byyyi耀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值