在当今数字化时代,企业知识库的构建对于知识管理和高效决策至关重要。基于 Deepseek + RAG(Retrieval-Augmented Generation)技术构建企业知识库,能够有效整合企业内外部知识资源,实现知识的快速检索和精准应用。而在这一过程中,文档预处理与数据整理是关键的基础环节,直接关系到知识库的质量和后续应用效果。
一、文件预处理:格式转换与数据清洗
(一)支持格式与转换要求
- 优先格式:
在企业知识库的构建中,文档格式的多样性给处理带来了挑战。为了提高处理效率和保证内容的清晰呈现,优先选择纯文本(TXT)、Markdown、HTML 等结构化格式的文档。这类文档具有处理速度快、内容结构清晰等优点,便于后续的分析和应用。然而,企业中存在大量非结构化文档,如 PDF、Word 等格式,这就需要进行格式转换以满足知识库构建的需求。
例如,对于 PDF 文档,需要将其转换为 TXT 或 HTML 格式,在转换过程中要保留文本内容的本质信息,同时去除复杂的排版元素,以确保内容的简洁性和可读性。
对于扫描件,由于其本身是图像格式,需要通过光学字符识别(OCR)技术进行处理,将图像中的文字转化为可编辑的文本格式,从而方便后续的文本分析和处理。此外,对于微信、飞书等聊天记录,通常包含大量的非结构化信息,需要将其转换为 TXT 格式,并提取其中的核心信息,以便更好地整合到知识库中。
- 多格式兼容:
在实际的企业环境中,文档格式往往多种多样,混杂存在。为了确保知识