加载chatglm3模型时出现ValueError: too many values to unpack (expected 2)的解决方案

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文主要介绍了加载chatglm3模型时出现ValueError: too many values to unpack (expected 2)的解决方案,希望能对使用ChatGLM 3的同学们有所帮助。

1. 问题描述

  今天在加载ChatGLM 3模型时,却出现了ValueError: too many values to unpack (expected 2)的错误提示,具体报错信息如下图所示:

在这里插入图片描述
  完整报错截图如下所示:
在这里插入图片描述

  在经过了亲身的实践后,终于找到了解决问题的方案,最终将逐步的操作过程总结如下。希望能对遇到同样bug的同学们有所帮助。

### 解决微调 ChatGLM 3 模型出现的 `ValueError` 错误 当尝试加载或微调 ChatGLM 3 模型并遇到 `ValueError: too many values to unpack (expected 2)` 的错误提示,这通常意味着在处理某些函数返回值的过程中存在不匹配的情况。具体来说,在期望两个返回值的地方实际接收到更多数量的数据。 #### 可能的原因分析 此类型的错误可能源于以下几个方面: - 函数定义与调用处对于返回值的数量预期不符[^3]。 - 数据结构的变化未被相应更新的代码所适配,比如迭代器的行为改变或是列表解析式的输出形式发生变动[^1]。 #### 实际案例中的常见问题点 针对特定于 ChatGLM 3 模型的操作环境内发生的此类异常情况,可以考虑以下几种可能性作为排查方向: - **模型版本兼容性**:如果使用的库文件不是最新版或者是不同分支间的混合安装,则可能导致API接口签名差异从而引发上述错误。建议确认所有依赖项均为官方推荐配置下的稳定发行版本[^4]。 - **数据预处理逻辑**:检查输入给定训练集格式是否严格遵循文档说明;特别是涉及到元组拆分操作的位置,确保每次解包都只作用于确切长度的对象之上[^2]。 #### 排查步骤指南 为了有效定位并修复该类错误,可采取下列措施之一来验证假设并实施修正方案: - 审视涉及多值赋值语句附近的源码片段,尤其是那些直接关联到外部资源读取的部分(如从磁盘加载序列化对象)。通过打印调试信息的方式观察实际传递过来的内容形态,进而调整目标端口以接纳正确数目参数。 - 对比当前工作流同官方样例项目之间的异同之处,留意是否存在额外引入第三方扩展模块影响到了原有流程控制路径的情形。必要情况下回滚至基础设置重新测试一遍整个过程看能否规避掉原生缺陷。 ```python # 示例代码用于展示如何安全地执行多值分配前先检验待分解集合大小 items = some_function_that_returns_multiple_values() if isinstance(items, tuple) and len(items) == expected_length: item_one, item_two = items else: raise Exception(f"Unexpected number of returned values {len(items)} instead of {expected_length}") ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的喵喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值