这篇文章让我们来看看 AIOps 是什么及其现状。同时探索一下 AIOps 的优势和组成部分。
IT 系统(硬件和软件)正变得更加高效和精密。与此同时,它们变得越来越复杂。虚拟化和容器化是极其重要的技术,但它们的复杂性给 IT 运营部门带来了挑战。
雇佣更多的员工或使用自动化工具来应对日益增长的复杂性并不是解决问题的办法,有限的能力和资源使复杂的 IT 系统难以简化。
那么答案是什么?
AIOps
近年来,人工智能(AI)已经进入 IT 运营部门。人工智能 IT 运维(AIOps)现在被作为一种解决方案来管理日益增长的 IT 复杂性。
AIOps 通过结合机器学习、大数据和自动化决策来完成 IT 任务。它使过程自动化无需大量的人工干预,使其不再依赖于人工资源。
AIOps 的演变
人工智能,机器学习,数据分析和 IT 运营(Ops)已经分别的存在了很多年。AIOps 创新思想得以引用是将数据驱动的分析洞察力和 IT 运维的实际情况结合在一起。
AIOps 的优势
AIOps 提供了两个有利于 IT 运维团队的重要特性:
它为 IT 运维团队提供了一些工具,这些工具可以通过收集和分析数据来做出高级决策和执行自动化操作。
它帮助传统的 IT 运维管理员转变为站点可靠性工程师(SRE)角色,并支持与业务需求相一致的更可扩展的工作流。
现在我们知道了什么是 AIOps,我们也知道了它的发展和好处。但是,使用 AIOps 需要做什么呢?
AIOps 的组成部分
要使 AIOps 工作,您需要实现四个组成部分。
数据收集,这是使用AIOps的第一步。
你需要从不同的数据源收集数据。必须将这些数据转换并聚合为具有足够质量的可用数据,以驱动数据分析和机器学习。
数据分析,一旦数据被适当地收集和转换,就要进行统计分析,从数据中得出见解。
机器学习,这是一个使用从数据分析中推断出洞察力,通过算法实现自动决策的过程。
人工智能(AI),这是指更广泛的自动化决策范畴,其中机器学习只是其中的一个组成部分。
AIOps 用例
当以上4个组成部分正确的实现了,AIOps 能够用于如下用例:
- 异常检测
- 因果分析
- 预测
- 告警管理
- 智能修复
AIOps 的现状
目前的AIOps采用率还不确定,但Gartner在2017年估计,到2019年,“25%的全球企业将战略性地实施AIOps平台,支持两个或更多的主要IT运营功能”。此外,根据TechValidate的调查,97%的受访IT组织同意,支持AIOps的解决方案能够提供可操作的见解,有助于自动化和增强总体IT运营功能。
AIOps已经被一些企业提前采用,尽管大多数企业可能需要一段时间才能部署AIOps平台。
AIOps的障碍
由于企业对AIOps是否反映了真正的创新或仅仅是炒作的不确定性,目前很难采用更多的AIOps。企业也发现收集高质量数据很困难,而且他们缺乏实现AIOps支持的解决方案的最佳实践。但这些障碍可以通过充分的研究和规划来克服。
总结
AIOps是管理IT系统复杂性的解决方案,它结合了数据驱动的分析洞察力和IT操作的实用性。然而,尽管AIOps有着巨大的前景,并且已经被一些企业采用,但大多数企业部署AIOps平台可能还需要一段时间。改变正在路上,但不会一蹴而就。