Linux学习~部署Apollo服务器(mqtt)

本文详细介绍了如何在Ubuntu 16环境下使用Java部署Apollo消息服务器的过程。包括下载、解压Apollo,创建broker实例,配置并启动服务等内容。Apollo支持多种协议如MQTT、WebSocket等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

linux部署Apollo服务器
实验环境:jdk1.8、Ubutun16、apache apollo1.7.1

ActiveMQ Apollo is a faster, more reliable, easier to maintain broker built from the foundations of the original ActiveMQ. It accomplishes this using a radically different threading and message dispatching architecture. Like ActiveMQ, Apollo is a multi-protocol broker and supports STOMP, AMQP, MQTT, Openwire, SSL, and WebSockets.

apollo是apache一个开源消息服务器,支持mqtt、websocket协议,之前毕设需要,是在windows下搭建的,相关可参考CSDN百度经验。它是基于java开发的,所以运行基于jvm,linux安装jdk请参考上一篇博客。

步奏:
1、官网下载apache-apollo-1.7.1-unix-distro.tar.gz,解压到

cd /
sudo tar -zxvf ~/Downloads/apache-apollo-1.7-unix-distro.tar.gz -C /usr/local

2、创建broker实例(超级管理员),注意一定要切换超级管理员权限下创建broker,否则会失败出现JAVA_HOME is not defined correctly。
安装步奏

sudo -s
cd /var/lib
/usr/local/apache-apollo-1.7/bin/apollo create mybroker

创建成功后,在/var/lib/mybroker目录下可以看到如下目录

bin——实例的启动脚本
etc——实例的配置文件
data——消息持久化数据
log——运行日志
tmp——临时文件

3、启动broker实例。如在局域网内其他主机能登录管理apollo自带了jetty web,则配置mybroker/etc/apollo.xml中http项。

/var/lib/mybroker/bin/apollo-broker run

4、apollo作为linux service启动,服务关闭重启分别用stop、restart

ln -s /var/lib/mybroker/bin/apollo-broker-service /etc/init.d/apollo
/etc/init.d/apollo start

至此可以登录apollo后台或者关闭防火墙mqtt客户端测试一下,ITPUB上面好像是在redhat或centos实验的,查了一下ubuntu不支持chkconfig命令。注:这里只将apollo以linux服务的方式启动,并不是开机启动,至于配置开机启动,我参考教程实验了多次没成功暂时不知道什么原因,这里查到两篇不错的文章(apache-apollo安装及配置过程ubuntu终止进程的方法)。
apollo作为linux service启动

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是嗨森啦

如果文章还不错,欢迎点赞收藏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值