最优子结构性质(反证法)
- 计算某问题的最优解包含的计算该问题的子问题也是最优解。事实上,如果找到子问题的更优解,则可以替换当前子问题的解,得到一个比最优解更优的解,这是一个矛盾。
贪心选择性质(数学归纳法)
- 先设一个最优解A⊆EA\subseteq EA⊆E(EEE为所给定的总元素集合,且AAA和EEE均
按照某种有利于算法贪心进行的顺序进行排序),并且设kkk为最优解的第一个元素(即k=min1≤i≤n{i∣xi=1}k=min_{1\leq{i}\leq{n}}\{i|x_i=1\}k=min1≤i≤n{i∣xi=1})。 - 1)当k=1k=1k=1时,AAA就是一个以贪心选择开始的最优解;
- 2)当k≥1k\geq 1k≥1时,设B=A−{k}∪{1}B=A-\{k\}\cup\{1\}B=A−{k}∪{1},由于AAA的价值与BBB的价值相等(即AAA能做到的BBB也可以做到),且AAA是最优的,故BBB也是最优的,因此BBB是以贪心选择元素1开始的最优解。