引入
通过前面的文章,我们对HBase已经有了基本认识,下面我们从HBase最核心的算法和数据结构进一步深入HBase。
HBase的一个列簇(Column Family)本质上就是一棵LSM树(Log-Structured Merge-Tree)。LSM树分为内存部分和磁盘部分。内存部分是一个维护有序数据集合的数据结构。一般来讲,内存数据结构可以选择平衡二叉树、红黑树、跳跃表(SkipList)等维护有序集的数据结构,这里由于考虑并发性能,HBase选择了表现更优秀的跳跃表。磁盘部分是由一个个独立的文件组成,每一个文件又是由一个个数据块组成。并且为了避免不必要的IO耗时,还可以在磁盘中存储一些额外的二进制数据,这些数据用来判断对于给定的key是否有可能存储在这个数据块中,这个数据结构称为布隆过滤器(Bloom Filter)。
下面我们就深入介绍一下提到的核心数据结构与算法:
- LSM树(Log-Structured Merge-Tree)
- 跳跃表(SkipList)
- 布隆过滤器(Bloom Filter)
LSM树(Log-Structured Merge-Tree)
LSM树本质上和B+树一样,是一种磁盘数据的索引结构。但和B+树不同的是,LSM树的索引对写入请求更友好。因为无论是何种写入请求,LSM树的索引结构本质都会将其全部转化成磁盘的顺序写入,而HDFS擅长的正是顺序写(且HDFS不支持随机写),因此基于HDFS实现的HBase能极大提高写入操作的性能,但这种设计对读取操作是非常不利的,因为需要在读取的过程中,通过归并所有文件来读取所对应的KV,这是非常消耗IO资源的。因此,在HBase中设计了异步的compaction来降低文件个数,达到提高读取性能的目的。由于HDFS只支持文件的顺序写,不支持文件的随机写,而且HDFS擅长的场景是大文件存储而非小文件,所以上层HBase选择LSM树这种索引结构是最合适的。
原理
LSM树是一种用于存储和管理数据的数据结构,特别适用于写入密集型的工作负载。它的设计灵感来自于日志结构文件系统。LSM树的核心思想是将写操作集中到一个内存中的有序数据结构(如MemTable),待数据积累到一定数量后,将这些数据批量写入到磁盘上的有序文件中。这种设计能够显著提高写操作的性能,因为将随机写转换为顺序写,能够减少磁盘的寻道时间。
结构
LSM树的索引一般由两部分组成,一部分是内存部分,一部分是磁盘部分。内存部分一般采用跳跃表来维护一个有序的KeyValue集合。磁盘部分一般由多个内部KeyValue有序的文件组成。
KeyValue存储格式
在HBase为例,这个字节数组串设计如下图所示,字节数组主要分为以下几个字段:
其中Rowkey、Family、Qualifier、Timestamp、Type这5个字段组成KeyValue中的key部分。
- keyLen:占用4字节,用来存储KeyValue结构中Key所占用的字节长度。
- valueLen:占用4字节,用来存储KeyValue结构中Value所占用的字节长度。
- rowkeyLen:占用2字节,用来存储rowkey占用的字节长度。
- rowkeyBytes:占用rowkeyLen个字节,用来存储rowkey的二进制内容。
- familyLen:占用1字节,用来存储Family占用的字节长度。
- familyBytes:占用familyLen字节,用来存储Family的二进制内容。
- qualifierBytes:占用qualifierLen个字节,用来存储Qualifier的二进制内容。
注意,HBase并没有单独分配字节用来存储qualifierLen,因为可以通过keyLen和其他字段的长度计算出qualifierLen。
代码如下:
qualifierLen=keyLen -2B - rowkeyLen -1B - familyLen -8B -1B
- timestamp:占用8字节,表示timestamp对应的long值。
- type:占用1字节,表示这个KeyValue操作的类型,HBase内有Put、Delete、Delete Column、DeleteFamily,等等。注意,这是一个非常关键的字段,表明了LSM树内存储的不只是数据,而是每一次操作记录。
Value部分直接存储这个KeyValue中Value的二进制内容。所以,字节数组串主要是Key部分的设计。
注意:
在HBase中,timestamp越大的KeyValue,排序越靠前。因为用户期望优先读取到那些版本号更新的数据。
通常来说,在LSM树的KeyValue中的Key部分,有3个字段必不可少:
- Key的二进制内容。
- 一个表示版本号的64位long值,在HBase中对应timestamp;这个版本号通常表示数据的写入先后顺序,版本号越大的数据,越优先被用户读取。甚至会设计一定的策略,将那些版本号较小的数据过期淘汰(HBase中有TTL策略)。
- type,表示这个KeyValue是Put操作,还是Delete操作,或者是其他写入操作。本质上,LSM树中存放的并非数据本身,而是操作记录。这对应了LSM树(Log-Structured Merge-Tree)中Log的含义,即操作日志。
多路归并
现在有K个文件,其中第i个文件内部存储有Ni个正整数(这些整数在文件内按照从小到大的顺序存储),如何设计一个算法将K个有序文件合并成一个大的有序文件?
在排序算法中,有一类排序算法叫做归并排序,里面就有大家熟知的两路归并实现。现在相当于K路归并,因此可以拓展一下,思路类似。对每个文件设计一个指针,取出K个指针中数值最小的一个,然后把最小的那个指针后移,接着继续找K个指针中数值最小的一个,继续后移指针……直到N个文件全部读完为止。
核心实现代码如下: