一、前言
通过langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。vLLM是一个快速且易于使用的LLM推理和服务库。通过两者的结合,可以更好地处理对话,提供更智能、更准确的响应,从而提高对话系统的性能和用户体验。
开源模型应用落地-LangChain试炼-CPU调用QWen1.5(一)
开源模型应用落地-LangChain高阶-GPU调用QWen1.5(二)
开源模型应用落地-LangChain高阶-集成vllm-QWen1.5(一)
通过langchain框架调用本地模型,使得用户可以直接提出问题或发送指令,而无需担心具体的步骤或流程。vLLM是一个快速且易于使用的LLM推理和服务库。通过两者的结合,可以更好地处理对话,提供更智能、更准确的响应,从而提高对话系统的性能和用户体验。
开源模型应用落地-LangChain试炼-CPU调用QWen1.5(一)
开源模型应用落地-LangChain高阶-GPU调用QWen1.5(二)
开源模型应用落地-LangChain高阶-集成vllm-QWen1.5(一)