开源模型应用落地-qwen模型小试-调用Qwen2-VL-7B-Instruct-更清晰地看世界-Lora-V100(四)

一、前言

    本篇文章将使用LLaMA-Factory去高效微调(命令和界面方式)QWen2-VL系列模型,通过阅读本文,您将能够更好地掌握这些关键技术,理解其中的关键技术要点,并应用于自己的项目中。


二、术语介绍

2.1. LoRA微调

    LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。  是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。

2.2.参数高效微调(PEFT) 

    仅微调少量 (额外) 模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本。

2.3. LLaMA-Factory

    是一个与 LLaMA(Large Language Model Meta AI)相关的项目,旨在为用户提供一种简化和优化的方式来训练、微调和部署大型语言模型。该工具通常包括一系列功能,如数据处理、模型配置、训练监控等,以帮助研究人员和开发者更高效地使用 LLaMA 模型。

    LLaMA-Factory支持的模型列表:

### 使用Qwen2VL-7B-Instruct模型LoRA技术 为了展示如何使用Qwen2VL-7B-Instruct模型应用LoRA微调技术,下面提供了一个详细的Python代码示例。此过程涉及加载预训练模型、初始化适配器以及执行微调操作。 #### 加载预训练模型 首先,需要通过`transformers`库来获取指定版本的Qwen2VL-7B-Instruct模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "qwen/Qwen2VL-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` #### 初始化适配器 接着,利用`adapters`模块为上述模型配置特定任务所需的参数调整机制: ```python import adapters # 准备模型以支持适配器功能 adapters.init(model) # 添加一个新的LoRA适配器层到现有网络结构中 adapter_config = { 'lora_r': 8, 'lora_alpha': 16, 'lora_dropout': 0.1, } model.add_adapter('my_lora_adapter', config=adapter_config) model.train_adapter('my_lora_adapter') ``` #### 执行微调流程 完成以上准备工作之后,可以基于自定义数据集对模型实施进一步优化: ```python from datasets import load_dataset from transformers import TrainingArguments, Trainer dataset = load_dataset("path_to_your_custom_data") training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['test'] ) trainer.train() ``` 这些步骤展示了如何有效地结合Qwen2VL-7B-Instruct模型LoRA技术来进行高效而灵活的任务定制[^1]。
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值