一、前言
在大模型技术蓬勃发展的今天,如何让AI真正“理解”用户意图,而非仅仅生成流畅文本,已成为落地应用的核心瓶颈。尤其是在客服、搜索、智能助手等场景中,模型对用户query的深层语义解析能力,直接决定了交互体验的成败。然而,经过标准SFT(监督微调)训练的模型,往往在偏好对齐和意图识别精度上存在明显不足——它们“会说话”,却未必“懂人心”。
本文以开源大模型Qwen3-4B为实验基座,结合高效微调框架LLaMA-Factory,系统探索基于DPO(Direct Preference Optimization)算法的偏好对齐方案,推动模型从“泛化生成”向“精准理解”的垂直进化。通过引入低秩适配(LoRA)等轻量化技术,我们在有限算力条件下,实现了对意图理解任务的高效优化。从数据清洗、提示词工程到偏好对的构建与损失函数设计,本文将完整还原一条提升意图识别准确率超30%的实战路径,揭秘如何让通用大模型真正“听懂”用户需求。
针对意图识别任务的优化,SFT(监督微调)是必要基础,而DPO(直接偏好优化)是可选的增强手段。是否需要两步走取决于您的数据资源、性能瓶颈和任务复杂度。
前置文章: