YOLOU开源 | 汇集YOLO系列所有算法,集算法学习、科研改进、落地于一身!

c18404b238e5dae14f704c205b719b98.png

这里推荐一个YOLO系列的算法实现库YOLOU,此处的“U”意为“United”的意思,主要是为了学习而搭建的YOLO学习库,也借此向前辈们致敬,希望不被骂太惨;

整个算法完全是以YOLOv5的框架进行,主要包括的目标检测算法有:YOLOv3、YOLOv4、YOLOv5、YOLOv5-Lite、YOLOv6、YOLOv7、YOLOX以及YOLOX-Lite。

同时为了方便算法的部署落地,这里所有的模型均可导出ONNX并直接进行TensorRT等推理框架的部署,后续也会持续更新。

模型精度对比

服务端模型

这里主要是对于YOLO系列经典化模型的训练对比,主要是对于YOLOv5、YOLOv6、YOLOv7以及YOLOX的对比,部分模型还在训练之中,后续所有预训练权重均会放出,同时对应的ONNX文件也会给出,方便大家部署应用落地。

注意,这里关于YOLOX也没完全复现官方的结果,后续有时间还会继续调参测试,尽可能追上YOLOX官方的结果。

下表是关于YOLOU中模型的测试,也包括TensorRT的速度测试,硬件是基于3090显卡进行的测试,主要是针对FP32和FP16进行的测试,后续的TensorRT代码也会开源。目前还在整理之中。

c837d3088d147c620a6efb9563cb0368.png

轻量化模型

为了大家在手机端或者其他诸如树莓派、瑞芯微、AID以及全志等芯片的部署,YOLOU也对YOLOv5和YOLOX进行了轻量化设计。

下面主要是对于边缘端使用的模型进行对比,主要是借鉴之前小编参与的YOLOv5-Lite的仓库,这里也对YOLOX-Lite进行了轻量化迁移,总体结果如下表所示,YOLOX-Lite基本上可以超越YOLOv5-Lite的精度和结果。

ab2b2ee21a1ec47d346561148b678265.png

如何使用YOLOU?

安装

这里由于使用的是YOLOv5的框架进行的搭建,因此安装形式也及其的简单,具体如下:

git clone https://github.com/jizhishutong/YOLOU
cd YOLOU
pip install -r requirements.txt

数据集

这里依旧使用YOLO格式的数据集形式,文件夹形式如下:

train: ../coco/images/train2017/
val: ../coco/images/val2017/

具体的标注文件和图像list如下所示:

├── images            # xx.jpg example
│   ├── train2017        
│   │   ├── 000001.jpg
│   │   ├── 000002.jpg
│   │   └── 000003.jpg
│   └── val2017         
│       ├── 100001.jpg
│       ├── 100002.jpg
│       └── 100003.jpg
└── labels             # xx.txt example      
    ├── train2017       
    │   ├── 000001.txt
    │   ├── 000002.txt
    │   └── 000003.txt
    └── val2017         
        ├── 100001.txt
        ├── 100002.txt
        └── 100003.txt

参数配置

YOLOU为了方便切换不同模型之间的训练,这里仅仅需要配置一个mode即可切换不同的模型之间的检测和训练,具体意义如下:

d39d862b63671dba87da3d94b7cbd80d.png

注意:这里的mode主要是对于Loss计算的选择,对于YOLOv3、YOLOv4、YOLOv5、YOLOR以及YOLOv5-Lite直接设置mode=yolo即可,对于YOLOX以及YOLOX-Lite则设置mode=yolox,对于YOLOv6和YOLOv7则分别设置mode=yolov6和mode=yolov7

注意由于YOLOv7使用了Aux分支,因此在设置YOLOv7时有一个额外的参数需要配置,即use_aux=True

具体训练指令如下:

python train.py --mode yolov6 --data coco.yaml --cfg yolov6.yaml --weights yolov6.pt --batch-size 32

检测指令如下:

python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream





检测结果

服务端模型

78f1823f1057ec94c66d8043f9943c07.png

轻量化模型

c60b9bfd68115252610ae80aab8e6664.png

--- END ---

后台回复“电子书”、“PyTorch” 获取资料包 加群 —> CV 微信技术交流群

绘图神器下载

后台回复:绘图神器,即可下载绘制神经网络结构的神器!
PyTorch 学习资料下载

后台回复:PyTorch资料,即可下载访问最全的PyTorch入门和实战资料!
我的专栏

专栏订阅:https://blog.csdn.net/charmve/category_10595130.html

迈微AI学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文

速递、优质开源项目、学习教程和实战训练等资料,

欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!

4b873c2aa648e736449fb01c31635fcf.jpeg

▲扫码进群

迈微AI研习社

微信号: MaiweiE_com

GitHub: @Charmve

CSDN、知乎: @Charmve

投稿: yidazhang1@gmail.com

主页: github.com/Charmve

6733f7f3e035f5177eaae104975fafbd.jpeg

整理不易,请点赞和在看3fd4aedff3d0c8a7c8acf27ecdc6adc5.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值