- 博客(247)
- 资源 (2)
- 收藏
- 关注
原创 【有啥问啥】大模型效率部署之Prefill-Decode分离
在 Prefill 阶段,模型将完整地处理用户输入的所有提示词(prompt),一次性完成前向计算,生成隐藏层的键值对缓存(KV 缓存),并输出生成序列的第一个 Token。这一阶段相当于用矩阵乘法并行计算整个输入序列,高效地利用了 GPU 的算力(进入 Decode 阶段后,模型开始自回归地逐步生成后续输出——每次仅处理一个新 Token,并利用前面累积的 KV 缓存计算注意力,产生下一个输出并更新 KV 缓存。
2025-06-27 16:08:28
969
原创 【有啥问啥】 什么是Chunked Prefill技术?
阶段对输入提示(prompt)进行前向推理,构建 Key-Value (KV) 缓存;阶段逐步生成输出令牌。传统流程中,Prefill 会处理整个输入序列后才开始输出解码,此时并行度高但对后续解码造成阻塞。即将一个长prompt的Prefill过程拆分成多个小块(chunk),在调度时将这些预填充块与其他请求的解码任务混合批处理。
2025-06-27 16:04:01
1026
原创 【有啥问啥】多Token预测(MTP)推理技术研究报告
传统自回归(AR)生成一次仅预测下一个token,每次都要前向计算模型,存在高度的串行开销。多Token预测(MTP)技术旨在一次前向中并行生成多个相邻token,从而复用模型计算并减少时序依赖。
2025-06-21 11:30:30
928
原创 【有啥问啥】视觉-语言-动作 (VLA) 技术概述
VLA 系统通常采用“视觉-语言模型(VLM)+ 动作预测模块” 的架构。视觉-语言模型部分使用预训练的视觉编码器(如ViT、DINOv2、SigLIP等)提取图像帧或视频特征,并使用大型语言模型(如LLaMA/GPT变体)对自然语言指令/描述进行编码。两种模态的特征一般通过机制(如交叉注意力、特征拼接或统一 token 形式)整合为统一表征。随后,动作预测模块以这个多模态上下文为条件,生成对应的动作输出。
2025-06-21 11:27:40
1157
原创 【有啥问啥】大模型交互新视角:Function Calling vs. Model Context Protocol (MCP)
大型语言模型(LLMs)的能力日益强大,但要让它们真正融入我们的应用生态并与真实世界有效互动,仅仅依靠文本输入和输出是不够的。我们需要更高级的机制来管理信息流、触发外部动作。和。尽管两者都与 LLM 的交互和能力扩展有关,但它们关注的层面和解决的问题有着本质的区别。
2025-05-16 01:15:00
1034
原创 【有啥问啥】解锁大模型新姿势:深度研究模式 (Deep Research Mode) 究竟是什么?
简单来讲,“深度研究模式”并非一个统一的技术标准,也并非某个模型特定的功能按钮(至少目前还不是一个被广泛认可的通用术语)。它更多地代表了一种利用大模型处理复杂、多维度、需要深度挖掘和综合分析的信息任务的能力和范式。任务复杂度: 它不再局限于单个事实的检索或简单问题的回答,而是专注于处理那些需要跨领域知识、深入了解历史背景、对比不同观点的复杂问题。例如,在研究“全球气候变化对不同生态系统的影响”时,需要综合气象学、生态学、地理学等多学科知识,分析历史数据和未来预测模型,对比不同地区生态系统的差异。
2025-05-16 00:15:00
903
原创 【有啥问啥】深入浅出理解RMSNorm:简单高效的神经网络归一化技术
RMSNorm 是对 LayerNorm 的有效简化,通过移除均值中心化步骤并仅使用均方根进行缩放,显著提高了计算效率,同时在许多任务中保持或超越了 LayerNorm 的性能。其简洁性和高效性使其成为现代深度学习(尤其是大型 Transformer 模型)中极具吸引力的归一化选项。
2025-04-28 01:15:00
741
原创 【有啥问啥】深入理解 Layer Normalization (LayerNorm):深度学习的稳定基石
特性BatchNormLayerNorm规范化维度跨样本的同一特征单一样本内的所有特征Batch Size 依赖性依赖 Batch Size,小 Batch Size 下性能下降与 Batch Size 无关序列数据处理处理变长序列复杂天然契合序列数据处理训练推理一致性需要维护移动平均统计量,行为不一致训练推理使用相同逻辑,行为一致。
2025-04-28 00:15:00
1122
原创 【有啥问啥】 深入探索低比特量化:FP4 训练与推理技术的现状及展望
特性FP32 (基准)FP16/BF16INT8INT4FP4 (概念性)比特数32168844类型浮点浮点整数浮点整数浮点压缩比 (相对FP32)1x2x4x4x8x8x动态范围非常大较大/中等有限 (需缩放)中等/较大非常有限极其有限精度高中等有限有限非常低极低硬件支持广泛广泛广泛 (推理)新兴 (Hopper+)稀少几乎没有主要应用通用训练/推理推理训练/推理推理 (探索)
2025-04-21 01:15:00
1828
原创 【有啥问啥】Model Context Protocol (MCP):AI与外部世界的交互枢纽
从本质上讲,MCP是一种开放标准协议,其核心目标在于统一LLM与外部数据源和工具之间的通信方式。它构建了一个标准化的框架,使得AI模型能够以一种规范、高效的方式与外部资源进行交互,就如同为AI模型配备了一个通用的“接口”,使其能够轻松接入各种外部系统。Model Context Protocol(MCP)是一个具有巨大潜力的开放协议,它为LLM与外部数据源和工具之间的无缝集成提供了标准化的解决方案。通过MCP,AI模型能够突破自身训练数据的局限,实时获取最新、上下文相关的信息来完成任务。
2025-04-21 00:15:00
1071
原创 【有啥问啥】mem0: 为你的 AI 应用打造持久化、可搜索的记忆
mem0 是一个开源 Python 库,旨在为基于 LLM 的应用程序(如聊天机器人、AI 代理、个人助理等)提供持久化、可搜索的记忆能力。你可以把它想象成 AI 的外部“海马体”,负责存储、管理和检索过去的交互信息,从而让 AI 能够进行更连贯、更个性化、更有上下文感知的对话和操作。它的核心目标是:让开发者能够轻松地为他们的 AI 应用集成长期记忆功能,而无需深入研究复杂的向量数据库或记忆管理策略的底层细节(尽管它也允许高级定制)。简洁的 API,易于集成。将记忆管理与核心应用逻辑分离。
2025-04-14 01:15:00
1827
原创 【有啥问啥】投机解码(Speculative Decoding)是什么?
近年来,大语言模型(LLM)以其惊人的能力改变了自然语言处理的格局。然而,这些强大的模型也带来了巨大的计算挑战,尤其是在推理(Inference)阶段。模型的规模越大,生成文本所需的时间就越长,这限制了它们在实时交互、大规模部署等场景下的应用。为了解决这个瓶颈,研究人员提出了各种优化技术,其中,“投机解码”(Speculative Decoding)是一种极具潜力且备受关注的方法。本文将深入浅出地介绍投机解码的原理、优势、挑战以及它为何能显著加速 LLM 推理过程。
2025-04-14 00:15:00
1252
原创 【有啥问啥】深度学习中的 Free Running 模式:原理、挑战与优化策略
Free running 模式也常称为自动回归生成模式。其核心思想是:在生成序列时,模型不再使用真实历史数据,而是将上一步的预测结果作为下一步的输入。初始令牌(例如 “[START]”)作为输入,模型预测出第一个词将预测出的第一个词作为输入,生成第二个词如此反复,直到生成结束符“[END]”或达到预定长度这种模式直接模拟模型在实际应用中的工作方式,因此更接近真实场景。但同时,由于依赖自身预测作为输入,如果模型在初始阶段出现错误,可能导致错误信息逐步累积,最终导致输出质量下降。
2025-04-09 01:15:00
1000
原创 【有啥问啥】深入浅出讲解 Teacher Forcing 技术
Teacher Forcing 是一种训练策略,其基本思想是在训练阶段,不使用模型上一时刻的预测结果作为当前时刻的输入,而是直接将真实的目标(ground truth)数据提供给模型。换句话说,在训练解码器(decoder)时,模型的每一步输入都由教师(即训练数据中的正确答案)提供,而不是依赖于模型自身已经生成的输出。例如,在典型的 Seq2Seq 模型中,如果输入句子为模型在时间步ttt的输入不再使用模型预测的yt−1yt−1,而是直接使用真实的yt−1。
2025-04-09 00:15:00
1379
原创 【有啥问啥】深入浅出:高性能大模型应用工具 vLLM 技术详解
vLLM,顾名思义,即“虚拟大型语言模型”,但实际上它并非一个全新的模型,而是一个为 LLM 推理和 Serving 优化的开源库。高性能推理引擎: vLLM 的核心目标是提供最先进的推理吞吐量。它通过多种优化技术,例如 PagedAttention,显著提升了 LLM 的推理速度和效率。高效内存管理: vLLM 采用了创新的机制,能够更有效地管理 attention key 和 value 的内存,降低内存占用,从而支持更大规模的模型和更长的上下文长度。易于使用: vLLM。
2025-03-07 01:15:00
1230
原创 【有啥问啥】深入浅出:大模型应用工具 Ollama 技术详解
Ollama 是一款轻量级、可扩展的开源工具,其核心目标是让用户能够在本地轻松地运行和管理大型语言模型。它提供了一个简洁的命令行界面(CLI)和友好的 API,极大地降低了使用大模型的门槛。Ollama 提供了一个统一的平台来下载、管理和运行各种大模型。用户无需手动配置复杂的环境,即可快速体验不同模型的特性。Ollama 强调模型的本地运行,这意味着模型推理过程完全在用户的设备上进行,无需依赖云端服务。这对于数据隐私、离线应用以及降低延迟至关重要。
2025-03-07 00:15:00
1104
原创 【有啥问啥】DeepSeek开源DeepGEMM:释放FP8矩阵乘法加速的潜力
Cα∗opAopBβ∗CCα∗opAopBβ∗CAAA和BBB是输入矩阵。CCC是输出矩阵。ααα和βββ是标量系数。opop()op代表可选的矩阵操作,例如转置或共轭转置。表示矩阵乘法。GEMM 广泛应用于各种计算密集型应用,尤其是在深度学习领域,它构成了卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 模型等的核心计算层。因此,GEMM 的效率直接影响着 AI 模型的训练和推理速度。
2025-02-28 01:45:00
1154
原创 【有啥问啥】深入了解 FlashMLA:Hopper GPU 的高效 MLA 解码内核
为了理解 FlashMLA 的优势,我们首先需要了解MLA 解码内核的概念。在深度学习模型,尤其是 Transformer 模型中,注意力机制 (Attention Mechanism)是核心组件之一。多层注意力 (MLA)机制是注意力机制的扩展,它允许模型在多个层级上进行信息交互和特征提取,从而更好地捕捉输入数据中的复杂关系。解码内核则指的是模型推理 (Inference) 阶段,特别是解码 (Decoding)阶段的核心计算模块。
2025-02-28 01:15:00
1013
原创 【有啥问啥】DeepSeek开源的DeepEP(Deep Expert Parallelism):MoE模型的通信加速利器
DeepEP是由DeepSeek开源的高性能通信库,专为MoE模型的训练和推理设计。MoE模型通过多个专家网络的协作来提高模型的性能和灵活性,但这也带来了通信和计算的挑战。DeepEP通过优化GPU间的数据传输和计算流程,显著提升了MoE模型的训练和推理效率。
2025-02-27 01:00:00
1164
原创 【有啥问啥】Hook机制:DeepEP中实现计算与通信的高效重叠
DeepEP 通过巧妙地运用 Hook 机制,成功地实现了计算与通信的高效重叠,为解决传统同步通信模式下的资源浪费和延迟问题提供了一个优秀的解决方案。它的优势在于高效的资源利用率、低延迟、透明性、易用性以及良好的灵活性。随着计算机技术的不断发展,对于计算与通信效率的要求也越来越高,DeepEP 的这种 Hook 机制有望在未来得到更广泛的应用和发展,为构建更高效、更智能的计算机系统做出贡献。
2025-02-27 00:15:00
2268
1
原创 【有啥问啥】NVLink 与 RDMA:高性能计算的左右护法
NVLink 和 RDMA 是现代高性能计算和数据中心不可或缺的关键技术。理解它们的特性和应用场景,有助于我们根据实际需求选择合适的通信协议,构建高效、强大的计算系统。随着计算需求的不断增长,相信这两种技术都将持续发展,并在未来的计算领域发挥更加重要的作用。
2025-02-26 21:15:00
1264
原创 【有啥问啥】All-to-All 通信:原理、实现与应用
All-to-All 通信是一种多对多的通信模式,其中每个参与进程都向所有其他进程发送不同的数据,同时接收来自所有其他进程的数据。这种通信模式允许每个进程与其他所有进程进行数据交换,从而实现全局数据的共享和分发。All-to-All 通信作为一种高效的多对多通信模式,在分布式计算和并行处理领域具有重要的应用价值。通过 Ring 算法和 Pairwise 算法的实现,All-to-All 通信可以有效地提高数据分发和收集的效率,为高性能计算和分布式系统提供了强大的支持。
2025-02-26 21:00:00
2175
原创 【有啥问啥】Kimi新注意力架构MoBA详解:如何让长文本处理效率提升16倍?
MoBA的提出标志着长上下文处理进入**“动态稀疏”新时代**。通过将MoE思想引入注意力机制,它不仅突破了计算效率瓶颈,更开创了**“结构自适应”**的注意力范式。随着代码开源与技术迭代,这项来自Kimi的创新或将重塑LLM的基础架构。
2025-02-21 16:30:00
1576
原创 【有啥问啥】DeepSeek NSA(Native Sparse Attention):开启高效推理与降本增效的新篇章
在人工智能领域,尤其是自然语言处理(NLP)和大语言模型(LLM)的浪潮中,性能与效率一直是研究者和开发者关注的焦点。随着模型规模的不断扩大,计算资源的需求呈指数级增长,这不仅带来了高昂的硬件成本,也对推理速度和实时性提出了严峻挑战。而DeepSeek团队提出的NSA(Native Sparse Attention,原生稀疏注意力机制)技术,为这一难题带来了新的曙光。
2025-02-21 16:00:00
1119
原创 【有啥问啥】解锁视觉与语言的密码:深入浅出指代表达式理解(Referring Expression Comprehension, REC)技术
简单来说,指代表达式理解 (REC) 是一种让计算机能够像人类一样,通过自然语言描述,在图像或视频中定位特定目标物体的技术。我们可以把它想象成给计算机装上了一双“眼睛”和一副“耳朵”,让它不仅能“看”到图像,还能“听”懂我们用语言发出的“指令”,并准确地找到我们描述的物体。指代表达式理解 (REC) 技术是一项充满活力和潜力的研究领域,它连接了自然语言和计算机视觉两个重要的研究方向。
2025-02-18 19:07:19
1084
原创 【有啥问啥】DeepSeek 技术原理详解
DeepSeek 通过一系列创新的技术原理,在模型架构、训练优化等方面实现了突破。其多头潜在注意力机制(MLA)和无辅助损失负载均衡策略显著提升了模型的推理效率和训练稳定性;多 token 预测训练目标和 FP8 混合精度训练框架提高了训练效率并降低了训练成本;大规模参数与稀疏激活以及丰富的训练数据则为模型的高性能提供了基础。这些技术的综合应用使 DeepSeek 在性能、效率和成本之间实现了革命性平衡,成为当前开源大语言模型中的佼佼者。
2025-02-18 19:02:18
1442
原创 【有啥问啥】大模型中的“快思考”与“慢思考”:理解AI的两种思维模式
快思考”和“慢思考”的概念源于心理学家丹尼尔·卡尼曼在他的著作《思考,快与慢》中提出的双系统理论。系统1:快思考 (Fast Thinking)特点:快速、自动、无意识、直觉性强、耗能少。运作方式:依赖于经验、习惯和启发式方法,不需要刻意控制。例子:识别熟悉的面孔、阅读简单的句子、躲避突然出现的障碍物等。系统2:慢思考 (Slow Thinking)特点:缓慢、费力、有意识、逻辑性强、耗能多。运作方式:需要集中注意力、进行逻辑推理和分析,需要刻意控制。例子。
2025-02-17 01:15:00
1672
原创 【有啥问啥】揭秘 DeepseekV3 的 DualPipe 技术:高效模型训练的秘密武器
顾名思义,DualPipe 技术的核心思想是将模型的训练过程分解为两个独立的“管道”或“通道”并行执行。想象一下,传统的模型训练就像一条单行道,所有的计算任务都必须在这条道路上排队等待执行,效率自然受限。而 DualPipe 技术则相当于修建了一条双行道,将原本拥挤的单行道变成了双车道,让更多的计算任务可以同时进行,从而大大提高了整体的通行效率。负责执行模型的前向传播过程。在前向传播中,输入数据逐层通过模型的各个网络层,最终得到模型的预测输出。负责执行模型的反向传播过程。
2025-02-17 00:15:00
1153
原创 【有啥问啥】多模态理解大模型之视觉问答 (VQA) 技术详解
顾名思义,视觉问答 (VQA) 任务的目标是让机器能够观看图像,并回答关于图像内容的自然语言问题。图像内容描述性问题: “图中的动物是什么?”、“图中人物在做什么?图像属性判断性问题: “图中天空是晴朗的吗?”、“图中的食物是热的吗?图像计数问题: “图中有几只猫?”、“图中有多少辆车?开放式问题: “这张图片表达了什么情感?”、“根据图片,接下来可能会发生什么?VQA 任务的输入是:一张图像 (Image) 和一个关于该图像的自然语言问题 (Question)。
2025-02-10 10:00:00
2473
1
原创 【有啥问啥】DeepSeekV3中的MTP(Multi-Token Prediction):提升大模型性能的利器
MTP(Multi-Token Prediction)技术通过在训练阶段一次性预测多个token,显著提升了大模型的训练效率和推理性能。它不仅能够提高样本的利用效率,加速模型的收敛,还能够增强模型对长距离依赖关系的学习能力。Meta和DeepSeek的实践案例充分证明了MTP的有效性和实用性,为大模型的优化提供了新的思路和方法。
2025-02-10 08:00:00
1882
原创 【有啥问啥】DeepSeek V3中的Multi-Head Latent Attention (MLA):技术解析与应用
Multi-Head Latent Attention (MLA)通过低秩联合压缩和解耦机制,显著降低了Transformer模型在推理和训练时的内存和计算开销。在DeepSeek-V3中,MLA不仅提升了模型的效率,还保持了高性能,使其在处理长文本和大规模数据时表现出色。随着NLP技术的不断发展,MLA有望在更多模型和应用中得到推广和应用。
2025-02-06 13:30:00
1903
1
原创 【有啥问啥】什么是CTC(Connectionist Temporal Classification)算法
CTC算法通过引入空白标签和前向-后向算法,有效地解决了输入和输出序列长度不一致的问题。它在语音识别、手写文字识别和自然语言处理等领域取得了显著的效果,是一种重要的序列建模工具。
2025-02-06 09:17:20
1310
原创 【有啥问啥】Contrastive Captioners(CoCa):对比式图像描述模型——图像-文本基础模型的新范式
随着深度学习技术的发展,多模态模型在处理视觉和语言任务方面的能力逐渐增强。特别是大规模预训练模型的兴起,使得这些模型可以快速迁移到许多下游任务中。本文深入探讨了CoCa(ContrastiveCaptioner),这是一种新的图像-文本对齐模型,旨在同时优化对比学习和图像描述的任务。通过结合对比损失和图像描述损失,CoCa能够在一个统一的框架内实现单模态、双模态以及生成任务的有效处理。
2025-01-19 13:53:32
1096
原创 【有啥问啥】大模型赋能智能座舱:重塑未来出行体验
随着智能座舱变得越来越聪明,它们逐渐从单纯的交通工具转变为人们生活中不可或缺的一部分。商汤绝影推出的ANewMemberForU产品就是一个很好的例子,它可以像私人秘书一样照顾乘客的需求,无论是调整舒适的乘车环境还是寻找最近的医院。这样的转变虽然带来了极大的便利,但也引发了关于人类与机器之间界限模糊化的讨论——我们应该如何界定二者之间的角色分配?又该如何保证人在整个过程中始终处于主导地位?综上所述,大模型赋能下的智能座舱不仅极大地丰富了我们的出行方式,也为整个汽车行业注入了新的活力。
2025-01-19 13:36:32
1049
原创 【有啥问啥】揭秘AI图像/视频生成的幕后功臣:重述(Recaptioning)技术
想象一下,你正在教一个小孩子认图识字。你给他看一张猫咪的照片,卡片上写着“猫”。这是最基础的描述,但对孩子来说,仅仅知道这是“猫”是不够的。他可能会问:猫是什么颜色的?在哪里?周围有什么?重述技术就像是给AI上了一个“高级补习班”,它不仅仅满足于简单的描述,还使用更加丰富和细致的语言,帮助AI从多个维度理解图像或视频的内容。这一过程就像是把图像背后的信息逐层展开,向AI呈现出更加复杂、真实的世界。例如,对于一张“猫坐在垫子上”的图片,传统的描述可能只有“猫在垫子上”。
2024-12-16 01:15:00
1076
原创 【有啥问啥】深入浅出Chiplet技术:后摩尔定律时代的芯片“搭积木”
简单来说,Chiplet就像把一块复杂的芯片“切”成许多小块,每一小块就叫做一个“芯粒”(Chiplet),然后用很厉害的封装技术把这些小块“拼”在一起,组成一个功能完整的芯片。是不是有点像我们小时候玩的乐高积木?不同的模块可以自由组合,搭建出各种各样的模型。以前,我们设计芯片喜欢“All in one”,把所有功能都塞到一块芯片上,叫做片上系统(SoC)。但Chiplet打破了这个传统,它把不同的功能模块分开来做成独立的Chiplet,然后再把它们连接起来。
2024-12-16 00:15:00
2463
原创 【有啥问啥】AIPC? - 什么是RPA技术?
简单来说,机器人流程自动化 (RPA) 就是用“软件机器人”来代替人操作电脑。这些“机器人”并不是真的机器人,而是一些程序或脚本,它们可以模拟人类在电脑上的各种操作,比如点击鼠标、键盘输入、复制粘贴等等。它们按照预先设定的规则一步一步地执行任务,就像一个训练有素的员工一样。举个栗子,你每天都要把大量的客户信息从一个表格复制到另一个系统中,这项工作既枯燥又容易出错。有了 RPA,你只需要设置好规则,机器人就能自动完成这项工作,省时省力又准确。RPA 和传统的 IT 自动化不太一样。
2024-12-13 01:15:00
1689
原创 【有啥问啥】大语言模型Prompt中的“System指令”:深入剖析与误区澄清
system指令”虽然是一个便于理解的术语,但它并不能准确地描述大语言模型的工作原理。LLM的强大之处在于其对自然语言的理解和生成能力,我们可以通过精心设计prompt来引导模型完成各种任务。因此,理解prompt的组成和优化方法,对于提升与LLM的互动质量至关重要。随着技术的进步,prompt设计已经成为一项核心技能,掌握高效的prompt设计技巧,将大大提升与LLM互动的效率和效果。未来,随着LLM在更多领域的应用,如何更精准地设计和调优prompt,可能成为AI技术应用中的一项关键能力。
2024-12-13 00:15:00
1751
原创 【有啥问啥】OpenAI发布Meta-Prompt:让提示词工程更上一层楼
作为提示词工程领域的一项革命性创新,Meta-Prompt不仅优化了传统的提示词设计方法,还为大型语言模型提供了更加精准、高效的控制手段。通过系统化的设计流程和精细化的优化方法,Meta-Prompt显著提升了模型的理解能力、生成文本的质量和提示词工程的便捷性。随着技术的不断发展和应用场景的不断拓展,Meta-Prompt有望在智能化优化、跨语言支持和多模态融合等方面取得进一步突破,为自然语言处理任务提供更加灵活、精准的解决方案。
2024-12-02 01:15:00
1596
原创 【有啥问啥】OpenAI提出的五级AGI:技术解析与未来展望
传送门链接:大模型时代AGI还是泡沫?AGI到底是什么?AGI指的是能够像人类一样具备广泛智能的人工系统。与当前大多数AI系统(例如,专注于特定任务的AI,如图像识别、语音识别)不同,AGI能够在多个领域中执行各种任务,并具有跨领域的学习能力。这意味着,AGI不仅能完成预定的任务,还能够理解新的任务、调整策略、解决从未遇到过的问题。AGI的实现被认为是人工智能发展的终极目标,而OpenAI提出的五级AGI模型,为我们理解这一目标的逐步达成提供了理论框架。
2024-12-02 00:15:00
3295
Deep Learning中文版本
2017-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人